Datasets:
File size: 10,616 Bytes
b05524d c20c07f ffd1156 b05524d ffd1156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
dataset_info:
features:
- name: original_nl_question
dtype: string
- name: recased_nl_question
dtype: string
- name: sparql_query
dtype: string
- name: verbalized_sparql_query
dtype: string
- name: nl_subject
dtype: string
- name: nl_property
dtype: string
- name: nl_object
dtype: string
- name: nl_answer
dtype: string
- name: rdf_subject
dtype: string
- name: rdf_property
dtype: string
- name: rdf_object
dtype: string
- name: rdf_answer
dtype: string
- name: rdf_target
dtype: string
splits:
- name: train
num_bytes: 11403929
num_examples: 34374
- name: validation
num_bytes: 1614051
num_examples: 4867
- name: test
num_bytes: 3304281
num_examples: 9961
download_size: 7595264
dataset_size: 16322261
task_categories:
- question-answering
- text-generation
tags:
- qa
- knowledge-graph
- sparql
language:
- en
---
# Dataset Card for SimpleQuestions-SPARQLtoText
## Table of Contents
- [Dataset Card for SimpleQuestions-SPARQLtoText](#dataset-card-for-simplequestions-sparqltotext)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [JSON fields](#json-fields)
- [Format of the SPARQL queries](#format-of-the-sparql-queries)
- [Answerable/unanswerable](#answerableunanswerable)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Types of questions](#types-of-questions)
- [Data splits](#data-splits)
- [Additional information](#additional-information)
- [Related datasets](#related-datasets)
- [Licencing information](#licencing-information)
- [Citation information](#citation-information)
- [This version of the corpus (with normalized SPARQL queries)](#this-version-of-the-corpus-with-normalized-sparql-queries)
- [Original version](#original-version)
## Dataset Description
- **Paper:** [SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications (AACL-IJCNLP 2022)](https://aclanthology.org/2022.aacl-main.11/)
- **Point of Contact:** GwΓ©nolΓ© LecorvΓ©
### Dataset Summary
Special version of [SimpleQuestions](https://github.com/askplatypus/wikidata-simplequestions) with SPARQL queries formatted for the SPARQL-to-Text task.
#### JSON fields
The original version of SimpleQuestions is a raw text file listing triples and the natural language question. A JSON version has been generated and augmented with the following fields:
* `rdf_subject`, `rdf_property`, `rdf_object`: triple in the Wikidata format (IDs)
* `nl_subject`, `nl_property`, `nl_object`: triple with labels retrieved from Wikidata. Some entities do not have labels, they are labelled as `UNDEFINED_LABEL`
* `sparql_query`: SPARQL query with Wikidata IDs
* `verbalized_sparql_query`: SPARQL query with labels
* `original_nl_question`: original natural language question from SimpleQuestions. This is in **lower case**.
* `recased_nl_question`: Version of `original_nl_question` where the named entities have been automatically recased based on the labels of the entities.
#### Format of the SPARQL queries
* Randomizing the variables names
* Delimiters are spaced
#### Answerable/unanswerable
Some questions in SimpleQuestions cannot be answered. Hence, it originally comes with 2 versions for the train/valid/test sets: one with all entries, another with the answerable questions only.
### Languages
- English
## Dataset Structure
### Types of questions
Comparison of question types compared to related datasets:
| | | [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) | [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) | [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) | [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) | [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) |
|--------------------------|-----------------|:---------------:|:------:|:-----------:|:----:|:---------:|
| **Number of triplets in query** | 1 | β | β | β | β | β |
| | 2 | | β | β | β | β |
| | More | | | β | β | β |
| **Logical connector between triplets** | Conjunction | β | β | β | β | β |
| | Disjunction | | | | β | β |
| | Exclusion | | | | β | β |
| **Topology of the query graph** | Direct | β | β | β | β | β |
| | Sibling | | β | β | β | β |
| | Chain | | β | β | β | β |
| | Mixed | | | β | | β |
| | Other | | β | β | β | β |
| **Variable typing in the query** | None | β | β | β | β | β |
| | Target variable | | β | β | β | β |
| | Internal variable | | β | β | β | β |
| **Comparisons clauses** | None | β | β | β | β | β |
| | String | | | β | | β |
| | Number | | | β | β | β |
| | Date | | | β | | β |
| **Superlative clauses** | No | β | β | β | β | β |
| | Yes | | | | β | |
| **Answer type** | Entity (open) | β | β | β | β | β |
| | Entity (closed) | | | | β | β |
| | Number | | | β | β | β |
| | Boolean | | β | β | β | β |
| **Answer cardinality** | 0 (unanswerable) | | | β | | β |
| | 1 | β | β | β | β | β |
| | More | | β | β | β | β |
| **Number of target variables** | 0 (β ASK verb) | | β | β | β | β |
| | 1 | β | β | β | β | β |
| | 2 | | | β | | β |
| **Dialogue context** | Self-sufficient | β | β | β | β | β |
| | Coreference | | | | β | β |
| | Ellipsis | | | | β | β |
| **Meaning** | Meaningful | β | β | β | β | β |
| | Non-sense | | | | | β |
### Data splits
Text verbalization is only available for a subset of the test set, referred to as *challenge set*. Other sample only contain dialogues in the form of follow-up sparql queries.
| | Train | Validation | Test |
| --------------------- | ---------- | ---------- | ---------- |
| Questions | 34,000 | 5,000 | 10,000 |
| NL question per query | 1 |
| Characters per query | 70 (Β± 10) |
| Tokens per question | 7.4 (Β± 2.1) |
## Additional information
### Related datasets
This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely:
- Non conversational datasets
- [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) (from https://github.com/askplatypus/wikidata-simplequestions)
- [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) (from https://github.com/barshana-banerjee/ParaQA)
- [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) (from http://lc-quad.sda.tech/)
- Conversational datasets
- [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) (from https://amritasaha1812.github.io/CSQA/)
- [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) (derived from https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0)
### Licencing information
* Content from original dataset: CC-BY 3.0
* New content: CC BY-SA 4.0
### Citation information
#### This version of the corpus (with normalized SPARQL queries)
```bibtex
@inproceedings{lecorve2022sparql2text,
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
year={2022}
}
```
#### Original version
```bibtex
@article{bordes2015large,
title={Large-scale simple question answering with memory networks},
author={Bordes, Antoine and Usunier, Nicolas and Chopra, Sumit and Weston, Jason},
journal={arXiv preprint arXiv:1506.02075},
year={2015}
}
```
|