Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
File size: 8,577 Bytes
f778f52
a8dd060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f778f52
a8dd060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
configs:
- config_name: labels
  data_files: data/labels.json
- config_name: templates
  data_files: data/templates.json
- config_name: conversations.country
  data_files:
  - path: data/country/test.json
    split: test
  - path: data/country/dev.json
    split: dev
  - path: data/country/train.json
    split: train
- config_name: conversations.historical_event
  data_files:
  - path: data/historical_event/test.json
    split: test
  - path: data/historical_event/dev.json
    split: dev
  - path: data/historical_event/train.json
    split: train
- config_name: conversations.food
  data_files:
  - path: data/food/test.json
    split: test
  - path: data/food/dev.json
    split: dev
  - path: data/food/train.json
    split: train
- config_name: conversations.space_object
  data_files:
  - path: data/space_object/test.json
    split: test
- config_name: conversations.with_unseen_properties
  data_files:
  - path: data/with_unseen_properties/test.json
    split: test
- config_name: conversations.taxon
  data_files:
  - path: data/taxon/test.json
    split: test
- config_name: conversations.person
  data_files:
  - path: data/person/test.json
    split: test
  - path: data/person/dev.json
    split: dev
  - path: data/person/train.json
    split: train
- config_name: conversations.ideology
  data_files:
  - path: data/ideology/test.json
    split: test
  - path: data/ideology/dev.json
    split: dev
  - path: data/ideology/train.json
    split: train
- config_name: conversations.molecular_entity
  data_files:
  - path: data/molecular_entity/test.json
    split: test
  - path: data/molecular_entity/dev.json
    split: dev
  - path: data/molecular_entity/train.json
    split: train
---

# KGConv, a Conversational Corpus grounded in Wikidata

## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
  - [Additional Information](#additional-information)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Repository:** [https://github.com/Orange-OpenSource/KGConv/]()
- **Paper:** [https://arxiv.org/abs/2308.15298]()
- **Point of Contact:** <quentin.brabant@orange.com>, <gwenole.lecorve@orange.com>, <linamaria.rojasbarahona@orange.com>, <claire.gardent@loria.fr>

### Dataset Summary

KGConv is a large corpus of 71k english conversations where each question-answer pair is grounded in a Wikidata fact. The conversations were generated automatically: in particular, questions were created using a collection of 10,355 templates; subsequently, the naturalness of conversations was improved by inserting ellipses and coreference into questions, via both handcrafted rules and a generative rewriting model. The dataset thus provides several variants of each question (12 on average), organized into 3 levels of conversationality. KGConv can further be used for other generation and analysis tasks such as single-turn question generation from Wikidata triples, question rewriting, question answering from conversation or from knowledge graphs and quiz generation.


### Languages

English.

## Dataset Structure

### Data Instances

Instance from the configs with name of the form "conversations.theme" (e.g. "conversations.country") have the following form:

```
{
    "conversation_id": "69795",
    "root_neighbourhood": [
      [
        "Q6138903",
        "P106",
        "Q82955"
      ],
      [
        "Q6138903",
        "P19",
        "Q3408680"
      ],
      ...
    ],
    "conversation": [
      {
        "triple": [
          "Q691",
          "P30",
          "Q538"
        ],
        "question variants": [
          {
            "out-of-context": "In which continent is Papua New Guinea located?",
            "in-context": "In which continent is Papua New Guinea located?",
            "in-context subject ref": "Papua New Guinea",
            "synthetic-in-context": "In which continent is Papua New Guinea located?"
          },
          {
            "out-of-context": "In what continent is Papua New Guinea in?",
            "in-context": "In what continent is Papua New Guinea in?",
            "in-context subject ref": "Papua New Guinea",
            "synthetic-in-context": "In what continent is Papua New Guinea in?"
          },
          ...
        ],
        "answer": "Oceania"
      },
      {
        "triple": [
          "Q691",
          "P38",
          "Q200759"
        ],
        "question variants": [
          {
            "out-of-context": "What is accepted as the currency of Papua New Guinea?",
            "in-context": "What is accepted as the currency of Papua New Guinea?",
            "in-context subject ref": "Papua New Guinea",
            "synthetic-in-context": "What is accepted as the currency?"
          },
          {
            "out-of-context": "What is the currency of Papua New Guinea?",
            "in-context": "What is the currency of Papua New Guinea?",
            "in-context subject ref": "Papua New Guinea",
            "synthetic-in-context": "What is the currency?"
          },
          ...
        ],
        "answer": "kina"
      },
      ...
```

Instances from the `labels` config are like this:

```
{
    "entity": "Q39",
    "labels": [
      "Swiss Confederation",
      "CHE",
      "Confoederatio Helvetica",
      "Swiss",
      "Schweiz",
      "SUI",
      "Switzerland",
      "CH",
      "Suisse",
      "Svizzera"
    ],
    "preferred_label": "Switzerland"
}
```

Instances from the `templates` config are as follows.

```
{
  "template_key": {
    "p": "P1201",
    "s_types": [
      "Q149918"
    ],
    "o_types": []
  },
  "templates": [
    {
      "left": "what is the space tug of ",
      "right": "?",
      "source": "interface:automatic labeler"
    },
    {
      "left": "what was the space tug of ",
      "right": "?",
      "source": "interface:624dc1cd4432b5035ba082df"
    },
    ...
  ]
}
```

### Data Fields

The fields from the configs with name of the form "conversations.theme" (e.g. "conversations.country") are the following:

- `conversation`: list of dicts; each dict reprensent one question+answer and has the following fields:
  - `conversation_id`: string
  - `root_neighbourhood`: list of triples (each triple is itself represented by a list of 3 string elements) that constitute the neighbourhood of the conversation root entity in the knowledge graph (see the LREC publication for more details)
  - `triple`: triple on which the question is based (list of three string elements)
  - `question variants`: list of dict; each dict contain several forms of a question obtained via a given template (see the LREC publication for more details)
    - `out-of-context`: one form of the question variant
    - `in-context`: another form of the question variant
    - `in-context subject ref`: how the subject is referred to in the in-context form
    - `synthetic-in-context`: yet another form of the question variant
  - `answer`: answer to the question (string)
    
The fields from the `labels` config are the following:

- `entity`: string, id of the entity
- `labels`: list of strings
- `preferred_label`: string

The fields from the `templates` config are the following:

- `template_key`: a dict containing the conditions for using the templates listed in `templates`, with the following fields:
  - `p`: id of the property
  - `s_types`: required types for subject
  - `o_types`: require types for object
- `templates`: list of dicts representing templates; each dict has the following fields:
  - `left`: left part of the template 
  - `right`: right part of the template
  - `source`: origin of the template (string)


## Additional Information

### Licensing Information

This software is distributed under the Creative Commons Attribution 4.0 International,
the text of which is available at https://spdx.org/licenses/CC-BY-4.0.html
or see the "license.txt" file for more details.


### Citation Information

```
@article{brabant2023kgconv,
      title={KGConv, a Conversational Corpus grounded in Wikidata}, 
      author={Quentin Brabant and Gwenole Lecorve and Lina M. Rojas-Barahona and Claire Gardent},
      year={2023},
      eprint={2308.15298},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```