|
|
import json |
|
|
import random |
|
|
from pathlib import Path |
|
|
from typing import Sequence, Callable |
|
|
|
|
|
import fire |
|
|
import h5py |
|
|
import numpy as np |
|
|
from tqdm import tqdm |
|
|
|
|
|
from infer_eval_utils import ( |
|
|
read_time_series_data, |
|
|
GENERATION_TASK_IDS, |
|
|
CLASSIFICATION_TASK_IDS, |
|
|
EVENT_DETECTION_TASK_IDS, |
|
|
ANOMALY_DETECTION_TASK_IDS, |
|
|
MCQ_TASK_IDS, |
|
|
IMPUTATION_TASK_IDS |
|
|
) |
|
|
|
|
|
|
|
|
def read_raw_data(path: str | None) -> Sequence: |
|
|
if path is None: |
|
|
return [] |
|
|
|
|
|
return read_time_series_data(path) |
|
|
|
|
|
|
|
|
def transform_raw_data_single_channel(raw_data: list | np.ndarray, |
|
|
dataset_id: str) -> str: |
|
|
|
|
|
if dataset_id in GENERATION_TASK_IDS: |
|
|
data_str_list = [] |
|
|
for x in raw_data: |
|
|
if x != "X": |
|
|
data_str_list.append(f"{float(x):.3f}") |
|
|
else: |
|
|
data_str_list.append(x) |
|
|
data_text = " ".join(data_str_list) |
|
|
else: |
|
|
data_text = " ".join([f"{float(x):.3f}" for x in raw_data]) |
|
|
|
|
|
return data_text |
|
|
|
|
|
|
|
|
def transform_raw_data_to_text(raw_data: list | np.ndarray, dataset_id: str, |
|
|
channel_detail: list[str]) -> str: |
|
|
|
|
|
if isinstance(raw_data, np.ndarray): |
|
|
if raw_data.ndim > 1 and raw_data.shape[1] > 1 and len( |
|
|
channel_detail) == 0: |
|
|
channel_detail = [f"channel {i}" for i in range(raw_data.shape[1])] |
|
|
|
|
|
if len(channel_detail) <= 1: |
|
|
data_text = transform_raw_data_single_channel(raw_data, dataset_id) |
|
|
else: |
|
|
data_text = "" |
|
|
for channel_idx, channel_name in enumerate(channel_detail): |
|
|
channel_data = raw_data[:, channel_idx] |
|
|
channel_data_text = transform_raw_data_single_channel( |
|
|
channel_data, dataset_id) |
|
|
data_text += f"{channel_name}: {channel_data_text} " |
|
|
else: |
|
|
data_text = transform_raw_data_single_channel(raw_data, dataset_id) |
|
|
return data_text |
|
|
|
|
|
|
|
|
def transform_gt_data_to_text(gt_data: list | np.ndarray, |
|
|
dataset_id: str) -> str: |
|
|
gt_data = np.array(gt_data) |
|
|
if gt_data.ndim == 1: |
|
|
data_text = transform_raw_data_single_channel(gt_data, dataset_id) |
|
|
else: |
|
|
data_text = "" |
|
|
for channel_idx in range(gt_data.shape[1]): |
|
|
channel_data = gt_data[:, channel_idx] |
|
|
channel_data_text = transform_raw_data_single_channel( |
|
|
channel_data, dataset_id) |
|
|
data_text += f"{channel_data_text}\n" |
|
|
|
|
|
return data_text |
|
|
|
|
|
|
|
|
def get_extra_instruction(dataset_id: str, ) -> str: |
|
|
extra_instruction = "" |
|
|
if dataset_id == "ASU01_ASG02": |
|
|
extra_instruction = "Answer yes or no in the first line. If the Gravitational Wave is detected, answer the index of the starting time point in the second line." |
|
|
elif dataset_id == "EAU01_EAG02": |
|
|
extra_instruction = "Answer yes or no in the first line. If an Earthquake event is detected, answer the starting time point index of the P-wave in the second line, " \ |
|
|
"answer the starting time point index of the S-wave in the third line." |
|
|
elif dataset_id == "MFU01_MFU02": |
|
|
extra_instruction = "Output the diameter in the first line, and the position in the second line." |
|
|
elif dataset_id == "PHU01": |
|
|
extra_instruction = "Give each answer in a line. For example, if the answer is ['NORM', 'MI'], you should output: NORM\nMI." |
|
|
elif dataset_id == "MAG01": |
|
|
extra_instruction = "Give answer of each channel in a line so the number of predicted time points in each line should match the given one. For example, if " \ |
|
|
"it is required to predict the next 5 time points, and the predicted x0, x1, x2 are [[0.1, 0.2, 0.3, 0.4, 0.5], [0.4, 0.5, 0.6, 0.7, 0.8], [0.7, 0.8, 0.9, 0.1, 0.2]], " \ |
|
|
"you should output: 0.1 0.2 0.3 0.4 0.5\n0.4 0.5 0.6 0.7 0.8\n0.7 0.8 0.9 0.1 0.2." |
|
|
elif dataset_id in ANOMALY_DETECTION_TASK_IDS: |
|
|
extra_instruction = "Answer yes if anomaly points are detected, and no if there are only normal points." |
|
|
elif dataset_id in GENERATION_TASK_IDS: |
|
|
extra_instruction = "Output the values separated by spaces." |
|
|
return extra_instruction |
|
|
|
|
|
|
|
|
def extract_gt(data: dict, dataset_id: str) -> str | dict | Path: |
|
|
if dataset_id in CLASSIFICATION_TASK_IDS: |
|
|
gt = data["gt_result"]["gt_class"] |
|
|
if isinstance(gt, dict) and len(gt) == 1: |
|
|
gt = gt["default"] |
|
|
if isinstance(gt, list) and len(gt) == 1: |
|
|
gt = gt[0] |
|
|
elif dataset_id in GENERATION_TASK_IDS: |
|
|
gt = data["gt_ts"]["path"].strip("/") |
|
|
elif dataset_id in EVENT_DETECTION_TASK_IDS: |
|
|
gt = data["gt_result"] |
|
|
elif dataset_id in ANOMALY_DETECTION_TASK_IDS: |
|
|
gt = data["gt_result"]["contain"] |
|
|
elif dataset_id in MCQ_TASK_IDS: |
|
|
gt = data["gt_result"]["answer"] |
|
|
else: |
|
|
raise ValueError(f"Unsupported dataset id: {dataset_id}") |
|
|
return gt |
|
|
|
|
|
|
|
|
def initialize_model() -> Callable: |
|
|
""" |
|
|
Initialize the model here. The model can be called by: |
|
|
|
|
|
```python |
|
|
response = model(prompt) |
|
|
# or |
|
|
response = model(prompt, max_tokens=max_tokens) # to limit the response length |
|
|
``` |
|
|
""" |
|
|
pass |
|
|
|
|
|
|
|
|
def infer_dataset(model: Callable, dataset_data: list, scits_dir: Path, |
|
|
dataset_id: str, output_path: Path): |
|
|
print(f"Inferring {dataset_id}") |
|
|
|
|
|
if dataset_id in GENERATION_TASK_IDS: |
|
|
ext = "h5" |
|
|
else: |
|
|
ext = "jsonl" |
|
|
|
|
|
output_path = Path(output_path) / f"{dataset_id}.{ext}" |
|
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
completed_ids = [] |
|
|
|
|
|
if str(output_path).endswith(".jsonl"): |
|
|
has_metadata = False |
|
|
|
|
|
if output_path.exists(): |
|
|
if str(output_path).endswith(".jsonl"): |
|
|
with open(output_path, 'r') as f: |
|
|
for line in f.readlines(): |
|
|
data = json.loads(line) |
|
|
if "id" in data: |
|
|
completed_ids.append(data["id"]) |
|
|
else: |
|
|
has_metadata = True |
|
|
elif str(output_path).endswith(".h5"): |
|
|
with h5py.File(output_path, 'r') as f: |
|
|
completed_ids = list(f.keys()) |
|
|
|
|
|
completed_ids = set(completed_ids) |
|
|
random.shuffle(dataset_data) |
|
|
dataset_data = dataset_data[:10] |
|
|
|
|
|
try: |
|
|
seq_length = dataset_data[0]["input_ts"]["length"] |
|
|
except: |
|
|
seq_length = None |
|
|
|
|
|
for sample in tqdm(dataset_data): |
|
|
id = sample["id"].replace( |
|
|
"/", "%2F") |
|
|
|
|
|
if id in completed_ids: |
|
|
continue |
|
|
|
|
|
|
|
|
if sample["input_ts"] is None: |
|
|
raw_data_path = None |
|
|
channel_detail = None |
|
|
else: |
|
|
raw_data_path = scits_dir / sample["input_ts"]["path"].strip("/") |
|
|
channel_detail = sample["input_ts"]["channel_detail"] |
|
|
|
|
|
raw_data = read_raw_data(raw_data_path) |
|
|
raw_data_text = transform_raw_data_to_text(raw_data, dataset_id, |
|
|
channel_detail) |
|
|
|
|
|
gt = extract_gt(sample, dataset_id) |
|
|
extra_instruction = get_extra_instruction(dataset_id) |
|
|
|
|
|
if dataset_id in GENERATION_TASK_IDS: |
|
|
|
|
|
gt_data = read_time_series_data(scits_dir / gt) |
|
|
gt_data_text = transform_gt_data_to_text( |
|
|
gt_data, dataset_id) |
|
|
max_tokens = len(gt_data_text) |
|
|
else: |
|
|
max_tokens = None |
|
|
|
|
|
prompt_text = f'{sample["input_text"]} {extra_instruction} Give me the answer directly, ' \ |
|
|
f'without any other extra content (including punctuation). ' \ |
|
|
f'{raw_data_text}' |
|
|
output_text = model(text=prompt_text, max_tokens=max_tokens) |
|
|
|
|
|
|
|
|
if dataset_id not in GENERATION_TASK_IDS: |
|
|
with open(output_path, 'a') as writer: |
|
|
if not has_metadata: |
|
|
metadata = {} |
|
|
if dataset_id in EVENT_DETECTION_TASK_IDS: |
|
|
metadata["seq_length"] = seq_length |
|
|
writer.write(json.dumps(metadata) + "\n") |
|
|
has_metadata = True |
|
|
|
|
|
pred_results = output_text |
|
|
if "class_list" in sample["gt_result"] and isinstance( |
|
|
sample["gt_result"]["class_list"], dict) and len( |
|
|
sample["gt_result"]["class_list"]) > 1: |
|
|
if len(output_text.split("\n")) != len( |
|
|
sample["gt_result"]["class_list"]): |
|
|
pred_results = "NA" |
|
|
else: |
|
|
pred_results = {} |
|
|
for class_name, pred_result in zip( |
|
|
sample["gt_result"]["class_list"], |
|
|
output_text.split("\n")): |
|
|
pred_results[class_name] = pred_result |
|
|
writer.write( |
|
|
json.dumps({ |
|
|
"id": id, |
|
|
"output": pred_results, |
|
|
"ground_truth": gt |
|
|
}) + "\n") |
|
|
else: |
|
|
if "\n" not in output_text: |
|
|
pred_result = np.fromstring(output_text.strip(), |
|
|
dtype=np.float32, |
|
|
sep=' ') |
|
|
else: |
|
|
try: |
|
|
pred_result = np.vstack([ |
|
|
np.fromstring(x.strip(), dtype=np.float32, sep=' ') |
|
|
for x in output_text.split("\n") |
|
|
]).transpose() |
|
|
except ValueError: |
|
|
pred_result = np.array([]) |
|
|
|
|
|
with h5py.File(output_path, 'a') as writer: |
|
|
writer[f"{id}/pred_result"] = pred_result |
|
|
writer[f"{id}/gt_path"] = gt.__str__().encode("utf-8") |
|
|
if dataset_id in IMPUTATION_TASK_IDS: |
|
|
writer[f"{id}/input_ts_path"] = sample["input_ts"][ |
|
|
"path"].strip("/").encode("utf-8") |
|
|
if "base_path" not in writer: |
|
|
writer["base_path"] = scits_dir.__str__().encode("utf-8") |
|
|
|
|
|
|
|
|
|
|
|
def infer( |
|
|
scits_dir: str, |
|
|
output_dir: str, |
|
|
): |
|
|
|
|
|
|
|
|
model: Callable = initialize_model() |
|
|
|
|
|
scits_dir = Path(scits_dir) |
|
|
output_dir = Path(output_dir) |
|
|
dataset_data = [] |
|
|
prev_dataset_id = None |
|
|
with open(scits_dir / "meta_data.jsonl", 'r') as f: |
|
|
for line in f.readlines(): |
|
|
sample = json.loads(line) |
|
|
dataset_id = "_".join(sample["task_id"]) |
|
|
|
|
|
if dataset_id != prev_dataset_id: |
|
|
if prev_dataset_id is not None: |
|
|
infer_dataset(model, dataset_data, scits_dir, prev_dataset_id, |
|
|
output_dir) |
|
|
dataset_data = [] |
|
|
prev_dataset_id = dataset_id |
|
|
dataset_data.append(sample) |
|
|
|
|
|
infer_dataset(model, dataset_data, scits_dir, prev_dataset_id, output_dir) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
fire.Fire(infer) |
|
|
|