File size: 4,330 Bytes
7cd05c2 bce1c49 1c35538 4ac6a79 507f011 bce1c49 f6b751d 1c35538 bce1c49 864f738 f990fb6 112f185 813fa51 f990fb6 813fa51 112f185 230a2d4 dccd417 f990fb6 3db6ae5 f990fb6 3db6ae5 f990fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: mit
extra_gated_prompt: >-
You agree to not use the dataset to conduct experiments that cause harm to
human subjects. Please note that the data in this dataset may be subject to
other agreements. Before using the data, be sure to read the relevant
agreements carefully to ensure compliant use. Video copyrights belong to the
original video creators or platforms and are for academic research use only.
task_categories:
- visual-question-answering
- video-classification
extra_gated_fields:
Name: text
Company/Organization: text
Country: text
E-Mail: text
modalities:
- Video
- Text
configs:
- config_name: action_sequence
data_files: json/action_sequence.json
- config_name: moving_count
data_files: json/moving_count.json
- config_name: action_prediction
data_files: json/action_prediction.json
- config_name: episodic_reasoning
data_files: json/episodic_reasoning.json
- config_name: action_antonym
data_files: json/action_antonym.json
- config_name: action_count
data_files: json/action_count.json
- config_name: scene_transition
data_files: json/scene_transition.json
- config_name: object_shuffle
data_files: json/object_shuffle.json
- config_name: object_existence
data_files: json/object_existence.json
- config_name: fine_grained_pose
data_files: json/fine_grained_pose.json
- config_name: unexpected_action
data_files: json/unexpected_action.json
- config_name: moving_direction
data_files: json/moving_direction.json
- config_name: state_change
data_files: json/state_change.json
- config_name: object_interaction
data_files: json/object_interaction.json
- config_name: character_order
data_files: json/character_order.json
- config_name: action_localization
data_files: json/action_localization.json
- config_name: counterfactual_inference
data_files: json/counterfactual_inference.json
- config_name: fine_grained_action
data_files: json/fine_grained_action.json
- config_name: moving_attribute
data_files: json/moving_attribute.json
- config_name: egocentric_navigation
data_files: json/egocentric_navigation.json
language:
- en
size_categories:
- 1K<n<10K
---
# MVBench
## Dataset Description
- **Repository:** [MVBench](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb)
- **Paper:** [2311.17005](https://arxiv.org/abs/2311.17005)
- **Point of Contact:** mailto:[kunchang li](likunchang@pjlab.org.cn)
## <span style="color: red;">Important Update</span>
[18/10/2024] Due to NTU RGB+D License, 320 videos from NTU RGB+D need to be downloaded manually. Please visit [ROSE Lab](https://rose1.ntu.edu.sg/dataset/actionRecognition/) to access the data. We also provide a [list of the 320 videos](https://huggingface.co/datasets/OpenGVLab/MVBench/blob/main/video/MVBench_videos_ntu.txt) used in MVBench for your reference.
![images](./assert/generation.png)
We introduce a novel static-to-dynamic method for defining temporal-related tasks. By converting static tasks into dynamic ones, we facilitate systematic generation of video tasks necessitating a wide range of temporal abilities, from perception to cognition. Guided by task definitions, we then **automatically transform public video annotations into multiple-choice QA** for task evaluation. This unique paradigm enables efficient creation of MVBench with minimal manual intervention while ensuring evaluation fairness through ground-truth video annotations and avoiding biased LLM scoring. The **20** temporal task examples are as follows.
![images](./assert/task_example.png)
## Evaluation
An evaluation example is provided in [mvbench.ipynb](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb). Please follow the pipeline to prepare the evaluation code for various MLLMs.
- **Preprocess**: We preserve the raw video (high resolution, long duration, etc.) along with corresponding annotations (start, end, subtitles, etc.) for future exploration; hence, the decoding of some raw videos like Perception Test may be slow.
- **Prompt**: We explore effective system prompts to encourage better temporal reasoning in MLLM, as well as efficient answer prompts for option extraction.
## Leadrboard
While an [Online leaderboard]() is under construction, the current standings are as follows:
![images](./assert/leaderboard.png) |