Datasets:

License:
File size: 6,497 Bytes
c1eaa40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from re import A
from typing import Dict, List, Tuple
import warnings

import numpy as np
import numpy.typing as npt

from shapely.geometry import Point

from nuplan.common.maps.abstract_map import AbstractMap
from nuplan.common.actor_state.state_representation import StateSE2
from nuplan.common.maps.maps_datatypes import SemanticMapLayer
from nuplan.common.maps.abstract_map_objects import (
    LaneGraphEdgeMapObject,
    RoadBlockGraphEdgeMapObject,
)

from navsim.planning.simulation.planner.pdm_planner.utils.route_utils import (
    route_roadblock_correction,
)
from navsim.planning.simulation.planner.pdm_planner.utils.graph_search.dijkstra import (
    Dijkstra,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_path import PDMPath
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_geometry_utils import (
    convert_absolute_to_relative_se2_array,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import (
    SE2Index,
)

# shapely runtime warning
warnings.filterwarnings("ignore", category=RuntimeWarning)


def get_driving_command(
    ego_pose: StateSE2,
    map_api: AbstractMap,
    route_roadblock_ids: List[str],
    distance: float = 20,
    lateral_offset: float = 2,
) -> npt.NDArray[np.int]:
    """
    Creates the one-hot (left, forward, right)driving command for the ego vehicle
    :param ego_pose: (x, y, heading) object for global ego pose
    :param map_api: nuPlan's map interface
    :param route_roadblock_ids: roadblock ids of route
    :param distance: longitudinal distance to interpolate on th centerline, defaults to 10
    :param lateral_offset: lateral offset for left/right threshold, to defaults to 2
    :return: numpy one-hot array of driving_command
    """

    driving_command = np.zeros((3,), dtype=int)  # one-hot: (left, forward, right)

    # If no route available, go straight
    if len(route_roadblock_ids) == 0:
        driving_command[1] = 1
        return driving_command

    # Apply route correction on route_roadblock_ids
    route_roadblock_dict, _ = get_route_dicts(map_api, route_roadblock_ids)
    corrected_route_roadblock_ids = route_roadblock_correction(
        ego_pose, map_api, route_roadblock_dict
    )
    route_roadblock_dict, route_lane_dict = get_route_dicts(map_api, corrected_route_roadblock_ids)

    # Find the nearest lane, graph search, and centerline extraction
    current_lane = get_current_lane(ego_pose, route_lane_dict)
    discrete_centerline = get_discrete_centerline(
        current_lane, route_roadblock_dict, route_lane_dict
    )
    centerline = PDMPath(discrete_centerline)

    # Interpolate target distance on centerline
    current_progress = centerline.project(Point(*ego_pose.array))
    target_progress = current_progress + distance

    current_pose_array, target_pose_array = centerline.interpolate(
        [current_progress, target_progress], as_array=True
    )
    target_pose_array = convert_absolute_to_relative_se2_array(
        StateSE2(*current_pose_array), target_pose_array[None,...]
    )[0]

    # Threshold for driving command
    if target_pose_array[SE2Index.Y] >= lateral_offset:
        driving_command[0] = 1
    elif target_pose_array[SE2Index.Y] <= -lateral_offset:
        driving_command[2] = 1
    else:
        driving_command[1] = 1

    # delete some variables for memory management
    del route_roadblock_dict, route_lane_dict, _, centerline
    return driving_command


def get_route_dicts(
    map_api: AbstractMap, route_roadblock_ids: List[str]
) -> Tuple[Dict[str, RoadBlockGraphEdgeMapObject], Dict[str, LaneGraphEdgeMapObject]]:
    """
    Loads the roadblock and lane dicts
    :param map_api: nuPlan's map interface
    :param route_roadblock_ids: roadblock ids of route
    :return: tuple of roadblock and lane dicts
    """

    # remove repeated ids while remaining order in list
    route_roadblock_ids = list(dict.fromkeys(route_roadblock_ids))

    route_roadblock_dict: Dict[str, RoadBlockGraphEdgeMapObject] = {}
    route_lane_dict: Dict[str, LaneGraphEdgeMapObject] = {}

    for id_ in route_roadblock_ids:
        block = map_api.get_map_object(id_, SemanticMapLayer.ROADBLOCK)
        block = block or map_api.get_map_object(id_, SemanticMapLayer.ROADBLOCK_CONNECTOR)
        route_roadblock_dict[block.id] = block
        for lane in block.interior_edges:
            route_lane_dict[lane.id] = lane

    return route_roadblock_dict, route_lane_dict


def get_current_lane(
    ego_pose: StateSE2, route_lane_dict: Dict[str, LaneGraphEdgeMapObject]
) -> LaneGraphEdgeMapObject:
    """
    Find current lane, either if intersection with ego pose, or by distance.
    :param ego_pose: (x, y, heading) object for global ego pose
    :param route_lane_dict: Dictionary of roadblock ids and objects
    :return: Lane object
    """

    closest_distance = np.inf
    starting_lane = None
    for edge in route_lane_dict.values():
        if edge.contains_point(ego_pose):
            starting_lane = edge
            break

        distance = edge.polygon.distance(Point(*ego_pose.array))
        if distance < closest_distance:
            starting_lane = edge
            closest_distance = distance

    return starting_lane


def get_discrete_centerline(
    current_lane: LaneGraphEdgeMapObject,
    route_roadblock_dict: Dict[str, RoadBlockGraphEdgeMapObject],
    route_lane_dict: Dict[str, LaneGraphEdgeMapObject],
    search_depth: int = 30,
) -> List[StateSE2]:
    """
    Given the current lane, apply graph search, and extract centerline.
    :param current_lane: Lane object closest to ego
    :param route_roadblock_dict: Dictionary of roadblock ids and objects
    :param route_lane_dict: Dictionary of lane ids and objects
    :param search_depth: max search depth of Dijkstra, defaults to 30
    :return: List of (x, y, heading) objects
    """

    roadblocks = list(route_roadblock_dict.values())
    roadblock_ids = list(route_roadblock_dict.keys())

    # find current roadblock index
    start_idx = np.argmax(np.array(roadblock_ids) == current_lane.get_roadblock_id())
    roadblock_window = roadblocks[start_idx : start_idx + search_depth]

    graph_search = Dijkstra(current_lane, list(route_lane_dict.keys()))
    route_plan, _ = graph_search.search(roadblock_window[-1])

    centerline_discrete_path: List[StateSE2] = []
    for lane in route_plan:
        centerline_discrete_path.extend(lane.baseline_path.discrete_path)

    return centerline_discrete_path