Datasets:

Modalities:
Video
ArXiv:
License:
LongyanWu commited on
Commit
3fcee7e
Β·
1 Parent(s): f99ab3e
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -19,13 +19,13 @@ Please refer to our πŸš€ [Website](http://opendrivelab.com/freetacman) | πŸ“„ [P
19
  ## πŸ”¬ Potential Applications
20
  The FreeTacman dataset enables diverse research directions in visuo-tactile learning and manipulation:
21
 
22
- **System Reproduction**: For researchers interested in hardware implementation, you can reproduce FreeTacMan from scratch using our πŸ› οΈ [Hardware Guide](https://docs.google.com/document/d/1Hhi2stn_goXUHdYi7461w10AJbzQDC0fdYaSxMdMVXM/edit?addon_store&tab=t.0#heading=h.rl14j3i7oz0t) and πŸ’» [Code](https://github.com/OpenDriveLab/FreeTacMan).
23
 
24
- **Multimodal Imitation Learning**: Transfer to other LED-based tactile sensors (such as GelSight) for developing robust multimodal imitation learning frameworks.
25
 
26
- **Tactile-aware Grasping**: Utilize the dataset for pre-training tactile representation models and developing tactile-aware reasoning systems.
27
 
28
- **Simulation-to-Real Transfer**: Leverage the dynamic tactile interaction sequences to enhance tactile simulation fidelity, significantly reducing the sim2real gap.
29
 
30
  ## πŸ“‚ Dataset Structure
31
 
 
19
  ## πŸ”¬ Potential Applications
20
  The FreeTacman dataset enables diverse research directions in visuo-tactile learning and manipulation:
21
 
22
+ - **System Reproduction**: For researchers interested in hardware implementation, you can reproduce FreeTacMan from scratch using our πŸ› οΈ [Hardware Guide](https://docs.google.com/document/d/1Hhi2stn_goXUHdYi7461w10AJbzQDC0fdYaSxMdMVXM/edit?addon_store&tab=t.0#heading=h.rl14j3i7oz0t) and πŸ’» [Code](https://github.com/OpenDriveLab/FreeTacMan).
23
 
24
+ - **Multimodal Imitation Learning**: Transfer to other LED-based tactile sensors (such as GelSight) for developing robust multimodal imitation learning frameworks.
25
 
26
+ - **Tactile-aware Grasping**: Utilize the dataset for pre-training tactile representation models and developing tactile-aware reasoning systems.
27
 
28
+ - **Simulation-to-Real Transfer**: Leverage the dynamic tactile interaction sequences to enhance tactile simulation fidelity, significantly reducing the sim2real gap.
29
 
30
  ## πŸ“‚ Dataset Structure
31