data_transfer / ecm.py
Onearth's picture
Upload 3 files
742ef47 verified
raw
history blame
8.25 kB
# Author(s): Jiaqi Xu
# Created on: 2020-11
"""
PSM wrapper
Refer to:
https://github.com/jhu-dvrk/dvrk-ros/blob/master/dvrk_python/src/dvrk/ecm.py
https://github.com/jhu-dvrk/dvrk-ros/blob/7b3d48ca164755ccfc88028e15baa9fbf7aa1360/dvrk_python/src/dvrk/ecm.py
https://github.com/jhu-dvrk/sawIntuitiveResearchKit/blob/master/share/kinematic/ecm.json
https://github.com/jhu-dvrk/sawIntuitiveResearchKit/blob/4a8b4817ee7404b3183dfba269c0efe5885b41c2/share/arm/ecm-straight.json
"""
import os
import numpy as np
import pybullet as p
from surrol.robots.arm import Arm
from surrol.const import ASSET_DIR_PATH
from surrol.utils.pybullet_utils import (
get_joint_positions,
get_link_pose,
render_image
)
# Rendering width and height
RENDER_HEIGHT = 256
RENDER_WIDTH = 256
FoV = 60
LINKS = (
'ecm_base_link', 'ecm_yaw_link', 'ecm_pitch_end_link', # -1, 0, 1
'ecm_main_insertion_link', 'ecm_tool_link', # 2, 3
'ecm_end_link', # 4
'ecm_tip_link', # 5
'ecm_pitch_front_link', # 6
'ecm_pitch_bottom_link', 'ecm_pitch_top_link', # 7, 8
'ecm_pitch_back_link', # 9
'ecm_remote_center_link', # 10
)
# tooltip-offset; refer to .json
tool_T_tip = np.array([[0.0, 1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]])
# Joint limits. No limits in the .json. TODO: dVRK config modified
TOOL_JOINT_LIMIT = {
'lower': np.deg2rad([-90.0, -45.0, 0.0, -np.inf]), # not sure about the last joint
'upper': np.deg2rad([ 90.0, 66.4, 254.0, np.inf]),
}
TOOL_JOINT_LIMIT['lower'][2] = -0.01 # allow small tolerance
TOOL_JOINT_LIMIT['upper'][2] = 0.254 # prismatic joint (m); not sure, from ambf
# [-1.57079633, -0.78539816, 0. , -1.57079633]
# [ 1.57079633, 1.15889862, 0.254, 1.57079633]
class Ecm(Arm):
NAME = 'ECM'
URDF_PATH = os.path.join(ASSET_DIR_PATH, 'ecm/ecm.urdf')
DoF = 4 # 4-dof arm
JOINT_TYPES = ('R', 'R', 'P', 'R')
EEF_LINK_INDEX = 4 # EEF link index, one redundant joint for inverse kinematics
TIP_LINK_INDEX = 5 # redundant joint for easier camera matrix computation
RCM_LINK_INDEX = 10 # RCM link index
# D-H parameters
A = np.array([0.0, 0.0, 0.0, 0.0])
ALPHA = np.array([np.pi / 2, -np.pi / 2, np.pi / 2, 0.0])
D = np.array([0.0, 0.0, -0.3822, 0.3829])
THETA = np.array([np.pi / 2, -np.pi / 2, 0.0, 0.0])
def __init__(self, pos=(0., 0., 1.), orn=(0., 0., 0., 1.),
scaling=1.):
super(Ecm, self).__init__(self.URDF_PATH, pos, orn,
TOOL_JOINT_LIMIT, tool_T_tip, scaling)
# camera control related parameters
self.view_matrix = None
self.proj_matrix = None
self._homo_delta = np.zeros((2, 1))
self._wz = 0
# b: rcm, e: eef, c: camera
pos_eef, orn_eef = get_link_pose(self.body, self.EEF_LINK_INDEX)
pos_cam, orn_cam = get_link_pose(self.body, self.TIP_LINK_INDEX)
self._tip_offset = np.linalg.norm(np.array(pos_eef) - np.array(pos_cam)) # TODO
wRe = np.array(p.getMatrixFromQuaternion(orn_eef)).reshape((3, 3))
wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
self._wRc0 = wRc.copy() # initial rotation matrix
self._eRc = np.matmul(wRe.T, wRc)
def _get_joint_positions_all(self, abs_input):
""" With the consideration of parallel mechanism constraints and other redundant joints.
"""
positions = get_joint_positions(self.body, self.joints)
joint_positions = [
abs_input[0], abs_input[1], # 0, 1
abs_input[2] * self.scaling, abs_input[3], # 2, 3
positions[4], positions[5], # 4 (0.0), 5 (0.0)
abs_input[1], # 6
-abs_input[1], -abs_input[1], # 7, 8
abs_input[1], # 9
positions[10], # 10 (0.0)
]
return joint_positions
def cVc_to_dq(self, cVc: np.ndarray) -> np.ndarray:
"""
convert the camera velocity in its own frame (cVc) into the joint velocity q_dot
"""
cVc = cVc.reshape((3, 1))
# restrict the step size, need tune
if np.abs(cVc).max() > 0.01:
cVc = cVc / np.abs(cVc).max() * 0.01
# Forward kinematics
q = self.get_current_joint_position()
bRe = self.robot.fkine(q).R # use rtb instead of PyBullet, no tool_tip_offset
_, orn_cam = get_link_pose(self.body, self.TIP_LINK_INDEX)
wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
# Rotation
R1, R2 = self._wRc0, wRc
x = R1[0, 0] * R2[1, 0] - R1[1, 0] * R2[0, 0] + R1[0, 1] * R2[1, 1] - R1[1, 1] * R2[0, 1]
y = R1[0, 0] * R2[1, 1] - R1[1, 0] * R2[0, 1] - R1[0, 1] * R2[1, 0] + R1[1, 1] * R2[0, 0]
dz = np.arctan(x / y)
k1, k2 = 25.0, 0.1
self._wz = k1 * dz * np.exp(-k2 * np.linalg.norm(self._homo_delta))
# print(' -> x: {:.4f}, y: {:.4f}, dz: {:.4f}, wz: {:.4f}'.format(x, y, dz, self._wz))
# Pseudo Solution
d = self._tip_offset
Jd = np.matmul(self._eRc,
np.array([[0, 0, d, 0],
[0, -d, 0, 0],
[1, 0, 0, 0]]))
Je = np.matmul(self._eRc,
np.array([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]))
eVe4 = np.dot(np.linalg.pinv(Jd), cVc) \
+ np.dot(np.dot((np.eye(4) - np.dot(np.linalg.pinv(Jd), Jd)), np.linalg.pinv(Je)),
np.array([[0], [0], [self._wz]]))
eVe = np.zeros((6, 1))
eVe[2: 6] = eVe4[0: 4]
Q = np.zeros((6, 6))
Q[0: 3, 0: 3] = - bRe
Q[3: 6, 3: 6] = - bRe
bVe = np.dot(Q, eVe)
# Compute the Jacobian matrix
bJe = self.get_jacobian_spatial()
dq = np.dot(np.linalg.pinv(bJe), bVe)
# print(" -> cVc: {}, q: {}, dq: {}".format(list(np.round(cVc.flatten(), 4)), q, list(dq.flatten())))
return dq.flatten()
def render_image(self, width=RENDER_WIDTH, height=RENDER_HEIGHT):
pos_eef, orn_eef = get_link_pose(self.body, self.EEF_LINK_INDEX)
pos_tip = get_link_pose(self.body, self.TIP_LINK_INDEX)[0]
mat_eef = np.array(p.getMatrixFromQuaternion(orn_eef)).reshape((3, 3))
# TODO: need to check the up vector
self.view_matrix = p.computeViewMatrix(cameraEyePosition=pos_eef,
cameraTargetPosition=pos_tip,
cameraUpVector=mat_eef[:, 0])
self.proj_matrix = p.computeProjectionMatrixFOV(fov=FoV,
aspect=float(width) / height,
nearVal=0.01,
farVal=10.0)
rgb_array, mask, depth = render_image(width, height,
self.view_matrix, self.proj_matrix)
return rgb_array, mask, depth
def get_centroid_proj(self, pos) -> np.ndarray:
"""
Compute the object position in the camera NDC space.
Refer to OpenGL.
:param pos: object position in the world frame.
"""
assert len(pos) in (3, 4)
if len(pos) == 3:
# homogeneous coordinates: (x, y, z) -> (x, y, z, w)
pos_obj = np.ones((4, 1))
pos_obj[: 3, 0] = pos
else:
pos_obj = np.array(pos).reshape((4, 1))
view_matrix = np.array(self.view_matrix).reshape(4, 4).T
proj_matrix = np.array(self.proj_matrix).reshape(4, 4).T
# pos in the camera frame
pos_cam = np.dot(proj_matrix, np.dot(view_matrix, pos_obj))
pos_cam /= pos_cam[3, 0]
return np.array([pos_cam[0][0], - pos_cam[1][0]]) # be consistent with get_centroid
@property
def homo_delta(self):
return self._homo_delta
@homo_delta.setter
def homo_delta(self, val: np.ndarray):
self._homo_delta = val
@property
def wz(self):
return self._wz