data_transfer / Player_ECM.py
Onearth's picture
Upload 2 files
24405bf verified
raw
history blame
30.3 kB
import torch
import torch.nn as nn
import numpy as np
import os
import cv2
import dvrk
import PyKDL
from PIL import Image
import matplotlib.pyplot as plt
import yaml
import math
from scipy.spatial.transform import Rotation as R
from easydict import EasyDict as edict
import sys
sys.path.append('IGEV/core')
sys.path.append('IGEV')
from igev_stereo import IGEVStereo
from IGEV.core.utils.utils import InputPadder
from rl.agents.ddpg import DDPG
import rl.components as components
import argparse
from FastSAM.fastsam import FastSAM, FastSAMPrompt
import ast
from PIL import Image
from FastSAM.utils.tools import convert_box_xywh_to_xyxy
import torch.nn.functional as F
import queue, threading
from vmodel import vismodel
from config import opts
from rectify import my_rectify
from surrol.robots.ecm import Ecm
import pybullet as p
import numpy as np
from surrol.utils.pybullet_utils import *
class Sim_ECM():
ACTION_SIZE = 3 # (dx, dy, dz) or cVc or droll (1)
ACTION_MODE = 'cVc'
DISTANCE_THRESHOLD = 0.005
POSE_ECM = ((0.15, 0.0, 0.7524), (0, 20 / 180 * np.pi, 0))
QPOS_ECM = (0, 0.6, 0.04, 0)
WORKSPACE_LIMITS = ((0.45, 0.55), (-0.05, 0.05), (0.60, 0.70))
SCALING = 1.
p = p.connect(p.GUI)
def __init__(self, render_mode: str = None, cid = -1):
# workspace
self.workspace_limits = np.asarray(self.WORKSPACE_LIMITS)
self.workspace_limits *= self.SCALING
# camera
self.use_camera = False
# has_object
self.has_object = False
self.obj_id = None
# super(Sim_ECM, self).__init__(render_mode, cid)
# change duration
self._duration = 0.1
# distance_threshold
self.distance_threshold = self.DISTANCE_THRESHOLD * self.SCALING
# render related setting
self._view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING),
distance=1.80 * self.SCALING,
yaw=150,
pitch=-30,
roll=0,
upAxisIndex=2
)
def reset_env(self):
assert self.ACTION_MODE in ('cVc', 'dmove', 'droll')
# camera
reset_camera(yaw=150.0, pitch=-30.0, dist=1.50 * self.SCALING,
target=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING))
# robot
self.ecm = Ecm(self.POSE_ECM[0], p.getQuaternionFromEuler(self.POSE_ECM[1]),
scaling=self.SCALING)
def SetPoints(windowname, img):
points = []
def onMouse(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
cv2.circle(temp_img, (x, y), 10, (102, 217, 239), -1)
points.append([x, y])
cv2.imshow(windowname, temp_img)
temp_img = img.copy()
cv2.namedWindow(windowname)
cv2.imshow(windowname, temp_img)
cv2.setMouseCallback(windowname, onMouse)
key = cv2.waitKey(0)
if key == 13: # Enter
print('select point: ', points)
del temp_img
cv2.destroyAllWindows()
return points
elif key == 27: # ESC
print('quit!')
del temp_img
cv2.destroyAllWindows()
return
else:
print('retry')
return SetPoints(windowname, img)
def resize_with_pad(image, target_width, target_height):
# 读取原始图片
#image = cv2.imread(image_path)
# 计算缩放比例
height, width = image.shape[:2]
scale = min(target_width / width, target_height / height)
# 缩放图片
resized_image = cv2.resize(image, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
# 计算pad的大小
pad_height = target_height - resized_image.shape[0]
pad_width = target_width - resized_image.shape[1]
# 加入pad
padded_image = cv2.copyMakeBorder(resized_image, 0, pad_height, 0, pad_width, cv2.BORDER_CONSTANT, value=[154,149,142 ])
return padded_image
def crop_img(img):
crop_img = img[:,100: ]
crop_img = crop_img[:,: -100]
#print(crop_img.shape)
crop_img=cv2.resize(crop_img ,(256,256))
return crop_img
# bufferless VideoCapture
class VideoCapture:
def __init__(self, name):
self.cap = cv2.VideoCapture(name)
video_name='test_record/{}.mp4'.format(name.split('/')[-1])
self.output_video = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'mp4v'), 30, (800, 600))
self.q = queue.Queue()
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
#t.join()
# read frames as soon as they are available, keeping only most recent one
def _reader(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
self.output_video.write(frame)
if not self.q.empty():
try:
self.q.get_nowait() # discard previous (unprocessed) frame
except queue.Empty:
pass
self.q.put(frame)
def read(self):
return self.q.get()
def release(self):
self.cap.release()
self.output_video.release()
def transf_DH_modified(alpha, a, theta, d):
trnsf = np.array([[math.cos(theta), -math.sin(theta), 0., a],
[math.sin(theta) * math.cos(alpha), math.cos(theta) * math.cos(alpha), -math.sin(alpha), -d * math.sin(alpha)],
[math.sin(theta) * math.sin(alpha), math.cos(theta) * math.sin(alpha), math.cos(alpha), d * math.cos(alpha)],
[0., 0., 0., 1.]])
return trnsf
basePSM_T_cam =np.array([[-0.89330132, 0.3482998 , -0.28407746, -0.0712333 ],
[ 0.44895017, 0.72151095, -0.52712968, 0.08994234],
[ 0.02136583, -0.59842226, -0.80089594, -0.06478026],
[ 0. , 0. , 0. , 1. ]])
cam_T_basePSM =np.array([[-0.89330132, 0.44895017, 0.02136583, -0.10262834],
[ 0.3482998 , 0.72151095, -0.59842226, -0.07884979],
[-0.28407746, -0.52712968, -0.80089594, -0.02470674],
[ 0. , 0. , 0. , 1. ]])
class VisPlayer(nn.Module):
def __init__(self):
super().__init__()
# depth estimation
self.device='cuda:0'
#self._load_depth_model()
#self._load_policy_model()
self._init_rcm()
self.img_size=(320,240)
self.scaling=1. # for peg transfer
self.calibration_data = {
'baseline': 0.005500,
'focal_length_left': 916.367081,
'focal_length_right': 918.730361
}
self.threshold=0.013
#self.init_run()
def _init_rcm(self):
# TODO check matrix
self.tool_T_tip=np.array([[0.0, 1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]])
### check this matrix, this matrix was the originally used one, which is used for PSM
# np.array([[ 0. ,-1. , 0. , 0.],
# [ 0. , 0. , 1. , 0.],
# [-1. , 0. , 0. , 0.],
# [ 0. , 0. , 0. , 1.]])
eul=np.array([np.deg2rad(-90), 0., 0.])
eul= self.get_matrix_from_euler(eul)
self.rcm_init_eul=np.array([-2.94573084 , 0.15808114 , 1.1354972])
#object pos [-0.123593, 0.0267398, -0.141579]
# target pos [-0.0577594, 0.0043639, -0.133283]
self.rcm_init_pos=np.array([ -0.0617016, -0.00715477, -0.0661465])
def _load_depth_model(self, checkpoint_path='pretrained_models/sceneflow.pth'):
args=edict()
args.restore_ckpt=checkpoint_path
args.save_numpy=False
args.mixed_precision=False
args.valid_iters=32
args.hidden_dims=[128]*3
args.corr_implementation="reg"
args.shared_backbone=False
args.corr_levels=2
args.corr_radius=4
args.n_downsample=2
args.slow_fast_gru=False
args.n_gru_layers=3
args.max_disp=192
self.depth_model = torch.nn.DataParallel(IGEVStereo(args), device_ids=[0])
#self.depth_model=IGEVStereo(args)
self.depth_model.load_state_dict(torch.load(args.restore_ckpt))
self.depth_model = self.depth_model.module
self.depth_model.to("cuda")
self.depth_model.eval()
def _load_policy_model(self, vmodel_file, filepath='./pretrained_models/state_dict.pt'):
with open('rl/configs/agent/ddpg.yaml',"r") as f:
agent_params=yaml.load(f.read(),Loader=yaml.FullLoader)
agent_params=edict(agent_params)
env_params = edict(
obs=19,
achieved_goal=3,
goal=3,
act=7,
max_timesteps=10,
max_action=1,
act_rand_sampler=None,
)
self.agent=DDPG(env_params=env_params,agent_cfg=agent_params)
checkpt_path=filepath
checkpt = torch.load(checkpt_path, map_location=self.device)
self.agent.load_state_dict(checkpt)
#self.agent.g_norm = checkpt['g_norm']
#self.agent.o_norm = checkpt['o_norm']
#self.agent.update_norm_test()
#print('self.agent.g_norm.mean: ',self.agent.g_norm.mean)
self.agent.g_norm.std=self.agent.g_norm_v.numpy()
self.agent.g_norm.mean=self.agent.g_norm_mean.numpy()
self.agent.o_norm.std=self.agent.o_norm_v.numpy()
self.agent.o_norm.mean=self.agent.o_norm_mean.numpy()
#print('self.agent.g_norm.mean: ',self.agent.g_norm.mean)
#exit()
'''
self.agent.depth_norm.std=self.agent.d_norm_v.numpy()
self.agent.depth_norm.mean=self.agent.d_norm_mean.numpy()
s
#print(self.agent.g_norm_v)
'''
self.agent.cuda()
self.agent.eval()
opts.device='cuda:0'
self.v_model=vismodel(opts)
ckpt=torch.load(vmodel_file, map_location=opts.device)
self.v_model.load_state_dict(ckpt['state_dict'])
self.v_model.to(opts.device)
self.v_model.eval()
def convert_disparity_to_depth(self, disparity, baseline, focal_length):
depth = baseline * focal_length/ disparity
return depth
def _get_depth(self, limg, rimg):
# input image should be RGB(Image.open().convert('RGB')); numpy.array
'''
img = np.array(Image.open(imfile)).astype(np.uint8)
img = torch.from_numpy(img).permute(2, 0, 1).float()
return img[None].to(DEVICE)
'''
limg=torch.from_numpy(limg).permute(2, 0, 1).float().to(self.device).unsqueeze(0)
rimg=torch.from_numpy(rimg).permute(2, 0, 1).float().to(self.device).unsqueeze(0)
with torch.no_grad():
#print(limg.ndim)
padder = InputPadder(limg.shape, divis_by=32)
image1, image2 = padder.pad(limg, rimg)
disp = self.depth_model(image1, image2, iters=32, test_mode=True)
disp = disp.cpu().numpy()
disp = padder.unpad(disp).squeeze()
depth_map = self.convert_disparity_to_depth(disp, self.calibration_data['baseline'], self.calibration_data['focal_length_left'])
#return disp
return depth_map
def _load_fastsam(self, model_path="./FastSAM/weights/FastSAM-x.pt"):
self.seg_model=FastSAM(model_path)
def _seg_with_fastsam(self, input, object_point):
point_prompt=str([object_point,[200,200]])
point_prompt = ast.literal_eval(point_prompt)
point_label = ast.literal_eval("[1,0]")
everything_results = self.seg_model(
input,
device=self.device,
retina_masks=True,
imgsz=608,
conf=0.25,
iou=0.7
)
prompt_process = FastSAMPrompt(input, everything_results, device=self.device)
ann = prompt_process.point_prompt(
points=point_prompt, pointlabel=point_label
)
return ann[0]
def _seg_with_red(self, grid_RGB):
# input image RGB
grid_HSV = cv2.cvtColor(grid_RGB, cv2.COLOR_RGB2HSV)
# H、S、V range1:
lower1 = np.array([0,59,25])
upper1 = np.array([20,255,255])
mask1 = cv2.inRange(grid_HSV, lower1, upper1) # mask: binary
# H、S、V range2:
#lower2 = np.array([156,43,46])
#upper2 = np.array([180,255,255])
#mask2 = cv2.inRange(grid_HSV, lower2, upper2)
mask3 = mask1 #+ mask2
return mask3
def _get_visual_state(self, seg, depth, robot_pos, robot_rot, jaw, goal):
seg_d=np.concatenate([seg.reshape(1, self.img_size[0], self.img_size[1]), \
depth.reshape(1, self.img_size[0], self.img_size[1])],axis=0)
inputs=torch.tensor(seg_d).unsqueeze(0).float().to(self.device)
robot_pos=torch.tensor(robot_pos).to(self.device)
robot_rot=torch.tensor(robot_rot).to(self.device)
jaw=torch.tensor(jaw).to(self.device)
goal=torch.tensor(goal).to(self.device)
with torch.no_grad():
#print(inputs.shape)
v_output=self.agent.v_processor(inputs).squeeze()
waypoint_pos_rot=v_output[3:]
return waypoint_pos_rot[:3].cpu().data.numpy().copy(), waypoint_pos_rot[3:].cpu().data.numpy().copy()
def _get_action(self, seg, depth, robot_pos, robot_rot, ecm_wz, goal):
# the pos should be in ecm space
'''
input: seg (h,w); depth(h,w); robot_pos 3; robot_rot 3; jaw 1; goal 3
'''
#depth=self.agent.depth_norm.normalize(depth.reshape(self.img_size*self.img_size),device=self.device).reshape(self.img_size,self.img_size)
#plt.imsave('test_record/pred_depth_norm_{}.png'.format(count),depth)
#image = self.img_transform({'image': rgb})['image']
seg=torch.from_numpy(seg).to("cuda:0").float()
depth=torch.from_numpy(depth).to("cuda:0").float()
robot_pos=torch.tensor(robot_pos).to(self.device)
robot_rot=torch.tensor(robot_rot).to(self.device)
jaw=torch.tensor(jaw).to(self.device)
goal=torch.tensor(goal).to(self.device)
with torch.no_grad():
v_output=self.v_model.get_obs(seg.unsqueeze(0), depth.unsqueeze(0))[0]
assert v_output.shape == (2,)
o_new=torch.cat([
robot_pos, robot_rot, torch.tensor([0.0,0.0]),
v_output, ecm_wz
])
print('o_new: ',o_new)
o_norm=self.agent.o_norm.normalize(o_new,device=self.device)
g_norm=self.agent.g_norm.normalize(goal, device=self.device)
input_tensor=torch.cat((o_norm, g_norm), axis=0).to(torch.float32)
action = self.agent.actor(input_tensor).cpu().data.numpy().flatten()
return action
def get_euler_from_matrix(self, mat):
"""
:param mat: rotation matrix (3*3)
:return: rotation in 'xyz' euler
"""
rot = R.from_matrix(mat)
return rot.as_euler('xyz', degrees=False)
def get_matrix_from_euler(self, ori):
"""
:param ori: rotation in 'xyz' euler
:return: rotation matrix (3*3)
"""
rot = R.from_euler('xyz', ori)
return rot.as_matrix()
def wrap_angle(self, theta):
return (theta + np.pi) % (2 * np.pi) - np.pi
def convert_pos(self,pos,matrix):
'''
input: ecm pose matrix 4x4
output rcm pose matrix 4x4
'''
return np.matmul(matrix[:3,:3],pos)+matrix[:3,3]
#bPSM_T_j6=self.get_bPSM_T_j6(joint)
#new_ma=matrix @ bPSM_T_j6
#a=np.matmul(new_ma[:3,:3],pos)+new_ma[:3,3]
#return a
def convert_rot(self, euler_angles, matrix):
# Convert Euler angles to rotation matrix
# return: matrix
roll, pitch, yaw = euler_angles
R_x = np.array([[1, 0, 0], [0, np.cos(roll), -np.sin(roll)], [0, np.sin(roll), np.cos(roll)]])
R_y = np.array([[np.cos(pitch), 0, np.sin(pitch)], [0, 1, 0], [-np.sin(pitch), 0, np.cos(pitch)]])
R_z = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]])
rotation_matrix = np.matmul(R_z, np.matmul(R_y, R_x))
# Invert the extrinsic matrix
extrinsic_matrix_inv = np.linalg.inv(matrix)
# Extract the rotation part from the inverted extrinsic matrix
rotation_matrix_inv = extrinsic_matrix_inv[:3, :3]
# Perform the rotation
position_rotated = np.matmul(rotation_matrix_inv, rotation_matrix)
return position_rotated
def get_bPSM_T_j6(self, joint_value):
LRcc = 0.4318
LTool = 0.4162
LPitch2Yaw = 0.0091
# alpha , a , theta , d
base_T_j1 = transf_DH_modified( np.pi*0.5, 0. , joint_value[0] + np.pi*0.5 , 0. )
j1_T_j2 = transf_DH_modified(-np.pi*0.5, 0. , joint_value[1] - np.pi*0.5 , 0. )
j2_T_j3 = transf_DH_modified( np.pi*0.5, 0. , 0.0 , joint_value[2]-LRcc )
j3_T_j4 = transf_DH_modified( 0. , 0. , joint_value[3] , LTool )
j4_T_j5 = transf_DH_modified(-np.pi*0.5, 0. , joint_value[4] - np.pi*0.5 , 0. )
j5_T_j6 = transf_DH_modified(-np.pi*0.5 , LPitch2Yaw , joint_value[5] - np.pi*0.5 , 0. )
j6_T_j6f = np.array([[ 0.0, -1.0, 0.0, 0.0], # Offset from file `psm-pro-grasp.json`
[ 0.0, 0.0, 1.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[ 0.0, 0.0, 0.0, 1.0]])
bPSM_T_j2 = np.matmul(base_T_j1, j1_T_j2)
bPSM_T_j3 = np.matmul(bPSM_T_j2, j2_T_j3)
bPSM_T_j4 = np.matmul(bPSM_T_j3, j3_T_j4)
bPSM_T_j5 = np.matmul(bPSM_T_j4, j4_T_j5)
bPSM_T_j6 = np.matmul(bPSM_T_j5, j5_T_j6)
bPSM_T_j6f = np.matmul(bPSM_T_j6, j6_T_j6f) # To make pose the same as the one in the dVRK
return bPSM_T_j6f
def rcm2tip(self, rcm_action):
return np.matmul(rcm_action, self.tool_T_tip)
def _set_action(self, action, robot_pos, rot):
########## TODO
'''
robot_pos in cam coodinate
robot_rot in rcm; matrix
'''
action[:3] *= 0.01 * self.scaling
#action[1]=action[1]*-1
#print(action)
ecm_pos=robot_pos+action[:3]
print('aft robot pos tip ecm: ',ecm_pos)
psm_pose=np.zeros((4,4))
psm_pose[3,3]=1
psm_pose[:3,:3]=rot
#print('ecm pos: ',ecm_pos)
rcm_pos=self.convert_pos(ecm_pos,basePSM_T_cam)
print('aft robot pos tip rcm: ',rcm_pos)
psm_pose[:3,3]=rcm_pos
#rcm_action=self.rcm2tip(psm_pose)
#return rcm_action
return psm_pose
'''
def _set_action(self, action, rot, robot_pos):
"""
delta_position (6), delta_theta (1) and open/close the gripper (1)
in the ecm coordinate system
input: robot_rot, robot_pos in ecm
"""
# TODO: need to ensure to use this scaling
action[:3] *= 0.01 * self.scaling # position, limit maximum change in position
#ecm_pose=self.rcm2ecm(psm_pose)
#ecm_pos=self.convert_pos(robot_pos, cam_T_basePSM)
ecm_pos=robot_pos+action[:3]
#ecm_pos[2]=ecm_pos[2]-2*action[2]
#ecm_pose[:3,3]=ecm_pose[:3,3]+action[:3]
#rot=self.get_euler_from_matrix(ecm_pose[:3,:3])
#rot=self.convert_rot(robot_rot, cam_T_basePSM)
#rot=self.get_euler_from_matrix(robot_rot)
#action[3:6] *= np.deg2rad(20)
#rot =(self.wrap_angle(rot[0]+action[3]),self.wrap_angle(rot[1]+action[4]),self.wrap_angle(rot[2]+action[5]))
#rcm_action_matrix=self.convert_rot(rot,basePSM_T_cam) # ecm2rcm rotation
rcm_pos=self.convert_pos(ecm_pos,basePSM_T_cam) # ecm2rcm position
rot_matrix=self.get_matrix_from_euler(rot)
#rcm_action_matrix=self.convert_rot(ecm_pose) #self.ecm2rcm(ecm_pose)
#rcm_action_eul=self.get_euler_from_matrix(rcm_action_matrix)
#rcm_action_eul=(self.rcm_init_eul[0], self.rcm_init_eul[1],rcm_action_eul[2])
#rcm_action_matrix=self.get_matrix_from_euler(rcm_action_eul)
psm_pose=np.zeros((4,4))
psm_pose[3,3]=1
psm_pose[:3,:3]=rot_matrix
psm_pose[:3,3]=rcm_pos
# TODO: use get_bPSM_T_j6 function
rcm_action=self.rcm2tip(psm_pose)
rcm_action=psm_pose
return rcm_action
'''
def convert_point_to_camera_axis(self, x, y, depth, intrinsics_matrix):
'''
# Example usage
x = 100
y = 200
depth = 5.0
intrinsics_matrix = np.array([[500, 0, 320], [0, 500, 240], [0, 0, 1]])
xc, yc, zc = convert_point_to_camera_axis(x, y, depth, intrinsics_matrix)
print(f"Camera axis coordinates: xc={xc}, yc={yc}, zc={zc}")
'''
# Extract camera intrinsics matrix components
fx, fy, cx, cy = intrinsics_matrix[0, 0], intrinsics_matrix[1, 1], intrinsics_matrix[0, 2], intrinsics_matrix[1, 2]
# Normalize pixel coordinates
xn = (x - cx) / fx
yn = (y - cy) / fy
# Convert to camera axis coordinates
xc = xn * depth
yc = yn * depth
zc = depth
return np.array([xc, yc, zc])
def goal_distance(self,goal_a, goal_b):
assert goal_a.shape==goal_b.shape
return np.linalg.norm(goal_a-goal_b,axis=-1)
def is_success(self, curr_pos, desired_goal):
d=self.goal_distance(curr_pos, desired_goal)
d3=np.abs(curr_pos[2]-desired_goal[2])
print('distance: ',d)
print('distance z-axis: ',d3)
if d3<0.003:
return True
return (d<self.threshold and d3<0.003).astype(np.float32)
def init_run(self):
intrinsics_matrix=np.array([[916.367081, 1.849829, 381.430393], [0.000000, 918.730361, 322.704614], [0.000000, 0.000000, 1.000000]])
self.ecm = dvrk.ecm('ECM')
self._finished=False
#player=VisPlayer()
self._load_depth_model()
#player._load_dam()
self._load_policy_model(vmodel_file='/home/kj/kj_demo/active/pretrained_models/best_model.pt',filepath='/home/kj/kj_demo/active/pretrained_models/s80_DDPG_demo0_traj_best_kj.pt')
self._load_fastsam()
self.cap_0=VideoCapture("/dev/video8") # left 5.23
self.cap_2=VideoCapture("/dev/video6") # right 5.23
# TODO the goal in scaled image vs. goal in simualtor?
for i in range(10):
frame1=self.cap_0.read()
frame2=self.cap_2.read()
self.fs = cv2.FileStorage("/home/kj/ar/EndoscopeCalibration/calibration_new.yaml", cv2.FILE_STORAGE_READ)
frame1, frame2 = my_rectify(frame1, frame2, self.fs)
frame1=cv2.resize(frame1, self.img_size)
frame2=cv2.resize(frame2, self.img_size)
point=SetPoints("Goal Selection", frame1)
self.object_point=point[0]
frame1=cv2.cvtColor(frame1, cv2.COLOR_BGR2RGB)
frame2=cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB)
goal= np.array([0.0,0.0,0.0])
self.goal=goal
self.count=0
####### Setup the simulator for ECM motion planning
self.sim_ecm = Sim_ECM('human')
self.sim_ecm.reset_env()
## get the current dvrk joint position and sync it to the simulator
current_dvrk_jp = self.ecm.measured_jp()
self.sim_ecm.ecm.reset_joint(np.array(current_dvrk_jp))
def run_step(self):
if self._finished:
return True
#time.sleep(.5)
self.count+=1
print("--------step {}----------".format(self.count))
#time.sleep(2)
frame1=self.cap_0.read()
frame2=self.cap_2.read()
#fs = cv2.FileStorage("/home/kj/ar/EndoscopeCalibration/calibration_new.yaml", cv2.FILE_STORAGE_READ)
frame1, frame2 = my_rectify(frame1, frame2, self.fs)
frame1=cv2.resize(frame1, self.img_size)
frame2=cv2.resize(frame2, self.img_size)
#frame1=resize_with_pad(frame1, player.img_size, player.img_size)
#frame2=resize_with_pad(frame2, player.img_size, player.img_size)
#frame1=crop_img(frame1)
#frame2=crop_img(frame2)
frame1=cv2.cvtColor(frame1, cv2.COLOR_BGR2RGB)
frame2=cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB)
plt.imsave( 'test_record/frame1_{}.png'.format(self.count),frame1)
plt.imsave( 'test_record/frame2_{}.png'.format(self.count),frame2)
# 1. get depth from left and right image
#depth=player._get_depth(frame1, frame2)
#depth=player._get_depth_with_dam(frame1)/10+0.025
#depth=depth/player.scaling
#frame1=cv2.resize(frame1, player.img_size)
#frame2=cv2.resize(frame2, player.img_size)
depth=self._get_depth(frame1, frame2)+0.09
#print(frame1.shape)
#print('depth shape: ',depth.shape)
#np.save('/home/kj/ar/GauzeRetrievel/test_record/depth.npy',depth)
#print(depth[self.object_point[0]][self.object_point[1]])
#print(depth)
#print(depth.mean())
#print(depth.std())
plt.imsave('test_record/pred_depth_{}.png'.format(self.count),depth)
seg=self._seg_with_fastsam(frame1,self.object_point)
#print(seg)
seg=np.array(seg==True).astype(int)
np.save('test_record/seg.npy',seg)
plt.imsave('test_record/seg_{}.png'.format(self.count),seg)
#seg=np.load('/home/kj/ar/peg_transfer/test_record/seg_from_depth.npy')
print("finish seg")
# exit()
# 3. get robot pose
# an example of the state
#PSM1_rotate = PyKDL.Rotation(transform[0,0], transform[0,1], transform[0,2],
# transform[1,0], transform[1,1], transform[1,2],
# transform[2,0], transform[2,1], transform[2,2])
#PSM1_pose = PyKDL.Vector(transform[0,-1], transform[1,-1], transform[2,-1])
#goal = PyKDL.Frame(PSM1_rotate, PSM1_pose)
#p.move_cp(goal).wait()
robot_pose=self.p.measured_cp()
robot_pos=robot_pose.p
print("pre action pos rcm: ",robot_pos)
robot_pos=np.array([robot_pos[0],robot_pos[1],robot_pos[2]])
#robot_pos=player.rcm2tip(robot_pos)
pre_robot_pos=np.array([robot_pos[0],robot_pos[1],robot_pos[2]])
# can be replaced with robot_pose.M.GetRPY()
# start
transform_2=robot_pose.M
np_m=np.array([[transform_2[0,0], transform_2[0,1], transform_2[0,2]],
[transform_2[1,0], transform_2[1,1], transform_2[1,2]],
[transform_2[2,0], transform_2[2,1], transform_2[2,2]]])
tip_ecm_pose=np.zeros((4,4))
tip_ecm_pose[3,3]=1
tip_ecm_pose[:3,:3]=np_m
tip_ecm_pose[:3,3]=robot_pos
#print('tip_psm_pose before: ',tip_psm_pose)
tip_ecm_pose=self.rcm2tip(tip_ecm_pose)
#print('tip_psm_pose aft: ',tip_psm_pose)
np_m=tip_ecm_pose[:3,:3]
robot_pos=tip_ecm_pose[:3,3]
#print("pre action pos tip rcm: ",robot_pos)
#robot_rot=np_m
robot_rot=self.get_euler_from_matrix(np_m)
# robot_rot=self.convert_rot(robot_rot, cam_T_basePSM)
# robot_rot=self.get_euler_from_matrix(robot_rot)
# robot_pos=self.convert_pos(robot_pos,cam_T_basePSM)
print("pre action pos tip ecm: ",robot_pos)
# end
action=self._get_action(seg, depth ,robot_pos, robot_rot, self.goal)
print("finish get action")
print("action: ",action)
#obtained_object_position=player.convert_pos(action, basePSM_T_cam)
#print('obtained_object_position: ',obtained_object_position)
#PSM2_pose=PyKDL.Vector(obtained_object_position[0], obtained_object_position[1], obtained_object_position[2])
# 4. action -> state
state=self._set_action(action, robot_pos, np_m)
print("finish set action")
print("state: ",state)
#z_delta=state[2,-1]-pre_robot_pos[2]
#state[2,-1]=pre_robot_pos[2]-z_delta
# 5. move
PSM2_rotate = PyKDL.Rotation(state[0,0], state[0,1], state[0,2],
state[1,0], state[1,1], state[1,2],
state[2,0], state[2,1], state[2,2])
PSM2_pose = PyKDL.Vector(state[0,-1], state[1,-1], state[2,-1])
curr_robot_pos=np.array([state[0,-1], state[1,-1], state[2,-1]])
move_goal = PyKDL.Frame(PSM2_rotate, PSM2_pose)
move_goal=PyKDL.Frame(robot_pose.M,PSM2_pose)
#if count>7:
# break
self.p.move_cp(move_goal).wait()
print("finish move")
print('is sccess: ',self.is_success(curr_robot_pos, self.rcm_goal))
if self.is_success(curr_robot_pos, self.rcm_goal) or self.count>9:
self._finished=True
return self._finished
'''
if action[3] < 0:
# close jaw
p.jaw.move_jp(np.array(-0.5)).wait()
else:
# open jaw
p.jaw.move_jp(np.array(0.5)).wait()
'''
#if cv2.waitKey(1)==27:
# break
def record_video(self, out1, out2):
for i in range(10):
frame1=self.cap_0.read()
frame2=self.cap_2.read()
out1.write(frame1)
out2.write(frame2)
return
import threading
if __name__=="__main__":
#lock = threading.Lock()
player=VisPlayer()
player.init_run()
finished=False
while not finished:
#player.record_video
finished=player.run_step()
player.cap_0.release()
player.cap_2.release()