Datasets:

Languages:
English
ArXiv:
License:
big_patent / README.md
albertvillanova's picture
Reorder split names (#2)
f31a317
|
raw
history blame
8.66 kB
metadata
annotations_creators:
  - no-annotation
language_creators:
  - found
language:
  - en
license:
  - cc-by-4.0
multilinguality:
  - monolingual
size_categories:
  - 100K<n<1M
  - 10K<n<100K
  - 1M<n<10M
source_datasets:
  - original
task_categories:
  - summarization
task_ids: []
paperswithcode_id: bigpatent
pretty_name: Big Patent
configs:
  - a
  - all
  - b
  - c
  - d
  - e
  - f
  - g
  - h
  - 'y'
tags:
  - patent-summarization
dataset_info:
  - config_name: all
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 23363518650
        num_examples: 1207222
      - name: validation
        num_bytes: 1290154487
        num_examples: 67068
      - name: test
        num_bytes: 1296234391
        num_examples: 67072
    download_size: 6447221554
    dataset_size: 25949907528
  - config_name: a
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 3329778447
        num_examples: 174134
      - name: validation
        num_bytes: 184116486
        num_examples: 9674
      - name: test
        num_bytes: 185987552
        num_examples: 9675
    download_size: 6447221554
    dataset_size: 3699882485
  - config_name: b
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 2574594655
        num_examples: 161520
      - name: validation
        num_bytes: 143029380
        num_examples: 8973
      - name: test
        num_bytes: 140741033
        num_examples: 8974
    download_size: 6447221554
    dataset_size: 2858365068
  - config_name: c
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 2641973267
        num_examples: 101042
      - name: validation
        num_bytes: 145441704
        num_examples: 5613
      - name: test
        num_bytes: 149052258
        num_examples: 5614
    download_size: 6447221554
    dataset_size: 2936467229
  - config_name: d
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 160467163
        num_examples: 10164
      - name: validation
        num_bytes: 8667961
        num_examples: 565
      - name: test
        num_bytes: 8713720
        num_examples: 565
    download_size: 6447221554
    dataset_size: 177848844
  - config_name: e
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 535567259
        num_examples: 34443
      - name: validation
        num_bytes: 28549964
        num_examples: 1914
      - name: test
        num_bytes: 29843613
        num_examples: 1914
    download_size: 6447221554
    dataset_size: 593960836
  - config_name: f
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 1297707404
        num_examples: 85568
      - name: validation
        num_bytes: 72367466
        num_examples: 4754
      - name: test
        num_bytes: 71676041
        num_examples: 4754
    download_size: 6447221554
    dataset_size: 1441750911
  - config_name: g
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 5571186559
        num_examples: 258935
      - name: validation
        num_bytes: 309182447
        num_examples: 14385
      - name: test
        num_bytes: 310624265
        num_examples: 14386
    download_size: 6447221554
    dataset_size: 6190993271
  - config_name: h
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 4988365946
        num_examples: 257019
      - name: validation
        num_bytes: 275293153
        num_examples: 14279
      - name: test
        num_bytes: 274505113
        num_examples: 14279
    download_size: 6447221554
    dataset_size: 5538164212
  - config_name: 'y'
    features:
      - name: description
        dtype: string
      - name: abstract
        dtype: string
    splits:
      - name: train
        num_bytes: 2263877990
        num_examples: 124397
      - name: validation
        num_bytes: 123505958
        num_examples: 6911
      - name: test
        num_bytes: 125090828
        num_examples: 6911
    download_size: 6447221554
    dataset_size: 2512474776

Dataset Card for Big Patent

Table of Contents

Dataset Description

Dataset Summary

BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories:

  • A (Human Necessities)
  • B (Performing Operations; Transporting)
  • C (Chemistry; Metallurgy)
  • D (Textiles; Paper)
  • E (Fixed Constructions)
  • F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting)
  • G (Physics)
  • H (Electricity)
  • Y (General tagging of new or cross-sectional technology)

Supported Tasks and Leaderboards

[More Information Needed]

Languages

English

Dataset Structure

Data Instances

Each instance contains a pair of description and abstract. description is extracted from the Description section of the Patent while abstract is extracted from the Abstract section.

Data Fields

  • description: detailed description of patent.
  • abstract: Patent abastract.

Data Splits

train validation test
all 1207222 67068 67072
a 174134 9674 9675
b 161520 8973 8974
c 101042 5613 5614
d 10164 565 565
e 34443 1914 1914
f 85568 4754 4754
g 258935 14385 14386
h 257019 14279 14279
y 124397 6911 6911

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@article{DBLP:journals/corr/abs-1906-03741,
  author    = {Eva Sharma and
               Chen Li and
               Lu Wang},
  title     = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
               Summarization},
  journal   = {CoRR},
  volume    = {abs/1906.03741},
  year      = {2019},
  url       = {http://arxiv.org/abs/1906.03741},
  eprinttype = {arXiv},
  eprint    = {1906.03741},
  timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Contributions

Thanks to @mattbui for adding this dataset.