File size: 8,064 Bytes
03b94a3
 
 
 
 
561b6af
94bf59a
561b6af
 
94bf59a
03b94a3
 
fb1a83a
4fc833e
 
 
 
fb1a83a
4fc833e
fb1a83a
4fc833e
fb1a83a
 
 
4fc833e
fb1a83a
 
 
 
 
4fc833e
 
 
fb1a83a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf2f313
 
fb1a83a
 
4fc833e
 
 
 
fb1a83a
4fc833e
fb1a83a
 
 
 
4fc833e
 
fb1a83a
 
4fc833e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
configs:
- config_name: default
  data_files:
  - split: train
    path: 
    - "*/*_clustered/*/*_response_L512_train.json"
  - split: dev
    path: 
    - "*/*_clustered/*/*_response_L512_dev.json"
---

# Multi-Questioner Dialogue (MQDialog) Dataset

## Dataset Details

### Dataset Description
The Multi-Questioner Dialogue (MQDialog) dataset is designed to facilitate research in questioner-aware personalization. It contains dialogues with various questioners for each reponder. The dataset is derived from English and Chinese scripts of popular TV shows and real-world conversations. It includes dialogues where selected leading actors act as responders, while other characters or contacts serve as questioners. The dataset contains a diverse set of 12 responders and 173 questioners. The dataset supports research on dialogue generation, response evaluation, and questioner-aware personalization in multi-turn conversations.

### Dataset Sources 

- **English scripts**: The Big Bang Theory, Friends, and Modern Family.
- **Chinese scripts**: My Own Swordsman and Empresses in the Palace.
- **Real-world conversations (WeChat)**: Records from a single user, focusing on two-person chats. *(Not public, but you can extract the data using the code we provided)*

## Direct Use
The dataset is suitable for:
- Training and evaluating questioner-aware multi-turn dialogue systems.
- Studying personality-aligned response generation.
- Benchmarking the performance of dialogue models with multi-questioner setups.


## Dataset Structure
- **Responders**: 12 leading actors from TV scripts and a single WeChat user.
- **Questioners**: 173 individuals interacting with the responders, the detailed information is listed in the Table.
- **Splits**: Randomly divided into training (3761 dialogues per responder on average) and testing (917 dialogues per responder on average).

<table>
    <tr>
        <td>Language</td>
        <td>Data Source</td>
        <td># Questioners</td>
        <td>Questioner Examples</td>
        <td>Responder</td>
        <td># train</td>
        <td># test</td>
    </tr>
    <tr>
        <td rowspan="6">English</td>
        <td rowspan="2">The Big Bang Theory</td>
        <td>14</td>
        <td>Priya, Barry, Howard, Leonard, etc.</td>
        <td>Sheldon</td>
        <td>4805</td>
        <td>1101</td>
    </tr>
    <tr>
        <td>12</td>
        <td>Bernadette, Penny, Raj, Stuart, etc.</td>
        <td>Leonard</td>
        <td>4607</td>
        <td>1014</td>
    </tr>
    <tr>
        <td rowspan="2">Friends</td>
        <td>12</td>
        <td>Amy, Chandler, Charlie, Joey, etc.</td>
        <td>Rachel</td>
        <td>3768</td>
        <td>870</td>
    </tr>
    <tr>
        <td>20</td>
        <td>Ben, Mike, Gary, Paul, etc.</td>
        <td>Ross</td>
        <td>3839</td>
        <td>960</td>
    </tr>
    <tr>
        <td rowspan="2">Modern Family</td>
        <td>9</td>
        <td>Alex, Cameron, Dylan, Gloria, etc.</td>
        <td>Claire</td>
        <td>1161</td>
        <td>281</td>
    </tr>
    <tr>
        <td>8</td>
        <td>Haley, Jay, Luke, Mitchell, etc.</td>
        <td>Phil</td>
        <td>881</td>
        <td>246</td>
    </tr>
    <tr>
        <td rowspan="6">Chinese</td>
        <td rowspan="3">My Own Swordsman</td>
        <td>16</td>
        <td>Bai Sanniang, Guo Furong, Mo Xiaobei, etc.</td>
        <td>Tong Xiangyu</td>
        <td>3200</td>
        <td>831</td>
    </tr>
    <tr>
        <td>16</td>
        <td>Bao Daren, Ji Wuming, Zhu Wushuang, etc.</td>
        <td>Bai Zhantang</td>
        <td>2995</td>
        <td>857</td>
    </tr>
    <tr>
        <td>8</td>
        <td>Li Dazui, Xing Butou, Yan Xiaoliu, etc.</td>
        <td>Lv Xiucai</td>
        <td>1635</td>
        <td>409</td>
    </tr>
    <tr>
        <td rowspan="2">Empresses in the Palace</td>
        <td>17</td>
        <td>Cao Guiren, Mei Zhuang, Liu Zhu, etc.</td>
        <td>Zhen Huan</td>
        <td>1229</td>
        <td>350</td>
    </tr>
    <tr>
        <td>11</td>
        <td>Consort Hua, Empress, Huan Bi, etc.</td>
        <td>Emperor</td>
        <td>704</td>
        <td>200</td>
    </tr>
    <tr>
        <td>WeChat Records</td>
        <td>30</td>
        <td>Author's contacts</td>
        <td>Author</td>
        <td>-</td>
        <td>-</td>
    </tr>
</table>
*Note: The last response from the responder serves as the ground truth, while preceding dialogues constitute the dialogue history. We provide a compact version of the training set because, during training, the answers within the dialogue history can be used to compute the loss, eliminating the need for the answer in the last sentence.

### Data Files & Code

For each responder, dialogues with different questioners are stored in the corresponding folder, `diags_two_role_{responder_name}`. Intermediate results from data processing are also provided. The final datasets used for questioner-aware personalization are:  
- `{script_name}_diags_{responder_name}_{questioner_name}_{responder_name}_response_L512_dev.json`  
- `{script_name}_diags_{responder_name}_{questioner_name}_{responder_name}_response_L512_train.json`  

Additionally, dialogues with different questioners are clustered based on query similarity. The clustering results are stored in the `diags_two_role_{responder_name}_clustered` folder.  

We have provided the preprocessed raw data for each scripts named with `{script_name}_dialgs.json`. To extract dialogues for one responder, please run the python file `extract_two_role_diag_{responder_name}.py` under each subfolder. 

**Related functions**:
- `get_role_list()`: get whole role name   
- `extract_diag_between_two_role()`: extract and only reserve diags between two roles  
- `clean_diag()`: remove duplicates, remove conversations with only one person, and remove empty values  
- `clean_diag_with_repeated()`: remove conversations with only one person, and remove empty values
- `split_train_and_dev()`: split training set and validation set
- `split_diag_with_sliding_window()`: construct diags with limited length through a sliding window
- `extract_diag_for_target_from_role_conv()`: only reserve diags that the response is from target role

### Data Instances
Below is an example from the dataset, it contains conversations between the `target_role` (i.e. `responder`) and the `input_role` (i.e. `questioner`). 
```json
{
    "id": "episode_14_chunk_6_index_0_part2_piece_0",
    "conversations": [
        {
            "from": "Bernadette",
            "value": "Did you hear? Isn’t it terrible?"
        },
        {
            "from": "Leonard",
            "value": "Have you seen him?"
        },
        {
            "from": "Bernadette",
            "value": "They wouldn’t let me in. Oh my Howie."
        },
        {
            "from": "Leonard",
            "value": "It’ll be okay. It’ll be okay."
        }
    ],
    "target_role": "Leonard",
    "target_role_short": "Leonard",
    "input_role": "Bernadette",
    "input_role_short": "Bernadette",
    "role_pair_id": 8,
    "cluster_id": 2 (Only in the clustered data)
}
```

## Dataset Creation

### Curation Rationale
MQDialog was created to address the need for a multilingual, multi-questioner dataset that reflects questioner-aware personalized response generation in diverse conversational contexts.

### Data Collection and Processing
- **Scripts**: Extracted dialogues between a responder (leading actor) and questioners (other characters), ensuring a clean dataset by removing errors, repeated content, and irrelevant entries.
- **Real-world records**: Focused on one-on-one conversations, with new dialogue sessions defined by a time gap (e.g., 3 hours).
- **Filtering**: Questioners with fewer than 20 interactions were excluded to ensure meaningful analysis.

### Recommendations
- Use the dataset in conjunction with other corpora to mitigate cultural or linguistic biases.
- Ensure responsible use of the data, particularly when training models for real-world applications.