File size: 2,998 Bytes
6176d9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c47d5
b2f8a4f
6176d9b
e2c47d5
b2f8a4f
6176d9b
e2c47d5
b2f8a4f
 
e2c47d5
6176d9b
 
 
 
 
 
 
 
 
e2c47d5
 
 
055c2ca
 
dc1df9d
055c2ca
 
 
8119cef
055c2ca
8ba1da5
551402d
 
 
 
f1a3ffa
532790b
7d53a01
f1a3ffa
 
 
280a42e
b54d946
 
 
532790b
 
 
 
 
 
 
 
 
 
bfbf646
532790b
 
 
 
 
 
 
 
271af0b
 
532790b
 
 
 
 
 
 
 
 
271af0b
532790b
271af0b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
dataset_info:
  features:
  - name: id
    dtype: string
  - name: language
    dtype: string
  - name: question
    dtype: string
  - name: choices
    struct:
    - name: text
      sequence: string
    - name: label
      sequence: string
  - name: answerKey
    dtype: string
  splits:
  - name: train
    num_bytes: 357825
    num_examples: 1119
  - name: validation
    num_bytes: 98118
    num_examples: 299
  - name: test
    num_bytes: 382265
    num_examples: 1172
  download_size: 433794
  dataset_size: 838208
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: apache-2.0
language:
- sw
---

# Dataset Card for ARC_Challenge_Swahili

## Dataset Summary

ARC_Challenge_Swahili is a Swahili translation of the original English ARC (AI2 Reasoning Challenge) dataset. This dataset evaluates the ability of AI systems to answer grade-school level multiple-choice science questions. The Swahili version was created using a combination of machine translation and human annotation to ensure high-quality and accurate translations.

## Translation Methodology
The translation process for the ARC_Challenge_Swahili dataset involved two main stages:

### Machine Translation:
1. The initial translation from English to Swahili was performed using the SeamlessM4TModel translation model.

* The following parameters were used for the translation:
```python
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=1024).to(device)
outputs = model.generate(**inputs, tgt_lang=dest_lang)
translation = tokenizer.batch_decode(outputs, skip_special_tokens=True)
```

2. Human Verification and Annotation:

* After the initial machine translation, the translations were passed through GPT-3.5 for verification. This step involved checking the quality of the translations and identifying any that were not up to standard.
* Human translators reviewed and annotated the translations flagged by GPT-3.5 as problematic to ensure accuracy and naturalness in Swahili.

## Supported Tasks and Leaderboards
* multiple-choice: The dataset supports multiple-choice question-answering tasks.

## Languages
The dataset is in Swahili.

## Dataset Structure

### Data Instances
* An example of a data instance:
```json
{
  "id": "example-id",
  "language": "sw",
  "question": "Ni gani kati ya zifuatazo ni sehemu ya mmea?",
  "choices": [
    {"text": "Majani", "Jiwe", "Ubao", "Nondo"},
    {"label": "A", "B": "C", "D"},
  ],
  "answerKey": "A"
}
```

### Data Fields
* id: Unique identifier for each question.
* language: The language of the question is Swahili (sw).
* question: The science question in Swahili.
* Choices: There are multiple-choice options, each with text and label.
* answerKey: The correct answer for each question.

## Datasplit
| Split | Num Rows |
|-------|----------|
| train | 1119 |
| validation | 299 |
| test | 1172 |