|
--- |
|
language: |
|
- en |
|
size_categories: |
|
- 10K<n<100K |
|
config_names: |
|
- chat |
|
configs: |
|
- config_name: chat |
|
default: true |
|
data_files: |
|
- split: train |
|
path: data/train.csv |
|
- split: validation |
|
path: data/valid.csv |
|
- split: test |
|
path: data/test.csv |
|
- split: test_geo |
|
path: data/test_geo.csv |
|
- split: test_vis |
|
path: data/test_vis.csv |
|
- split: test_cat |
|
path: data/test_cat.csv |
|
- split: test_web |
|
path: data/test_web.csv |
|
tags: |
|
- conversational |
|
- image-to-text |
|
- vision |
|
- convAI |
|
task_categories: |
|
- image-to-text |
|
- text-generation |
|
- conversational |
|
- text2text-generation |
|
- sentence-similarity |
|
pretty_name: weblinx |
|
--- |
|
|
|
<div align="center"> |
|
<h1 style="margin-bottom: 0.5em;">WebLINX: Real-World Website Navigation with Multi-Turn Dialogue</h1> |
|
<em>Xing Han Lù*, Zdeněk Kasner*, Siva Reddy</em> |
|
</div> |
|
|
|
<div style="margin-bottom: 2em"></div> |
|
|
|
|
|
<div style="display: flex; justify-content: space-around; align-items: center; font-size: 120%;"> |
|
<div><a href="https://arxiv.org/abs/2402.05930">📄Paper</a></div> |
|
<div><a href="https://mcgill-nlp.github.io/weblinx">🌐Website</a></div> |
|
<div><a href="https://huggingface.co/spaces/McGill-NLP/weblinx-explorer">💻Explorer</a></div> |
|
<div><a href="https://github.com/McGill-NLP/WebLINX">💾Code</a></div> |
|
<div><a href="https://twitter.com/sivareddyg/status/1755799365031965140">🐦Tweets</a></div> |
|
<div><a href="https://huggingface.co/collections/McGill-NLP/weblinx-models-65c57d4afeeb282d1dcf8434">🤖Models</a></div> |
|
</div> |
|
|
|
<video width="100%" controls autoplay muted loop> |
|
<source src="https://huggingface.co/datasets/McGill-NLP/WebLINX/resolve/main/WeblinxWebsiteDemo.mp4?download=false" type="video/mp4"> |
|
Your browser does not support the video tag. |
|
</video> |
|
|
|
|
|
## Quickstart |
|
|
|
To get started, simply install `datasets` with `pip install datasets` and load the chat data splits: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from huggingface_hub import snapshot_download |
|
|
|
valid = load_dataset("McGill-NLP/weblinx", split="validation") |
|
|
|
snapshot_download( |
|
"McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/llama.txt", local_dir="./" |
|
) |
|
with open('templates/llama.txt') as f: |
|
template = f.read() |
|
|
|
turn = valid[0] |
|
turn_text = template.format(**turn) |
|
``` |
|
|
|
You can now use `turn_text` as an input to LLaMA-style models. For example, you can use Sheared-LLaMA: |
|
```python |
|
|
|
from transformers import pipeline |
|
|
|
action_model = pipeline( |
|
model="McGill-NLP/Sheared-LLaMA-2.7B-weblinx", device=0, torch_dtype='auto' |
|
) |
|
out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True) |
|
pred = out[0]['generated_text'] |
|
|
|
print("Ref:", turn["action"]) |
|
print("Pred:", pred) |
|
``` |
|
|
|
## Raw Data |
|
|
|
To use the raw data, you will need to use the `huggingface_hub`: |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download(repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./data/weblinx") |
|
``` |
|
|
|
For more information on how to use this data using our [official library](https://github.com/McGill-NLP/WebLINX), please refer to the [WebLINX documentation](https://mcgill-nlp.github.io/weblinx/docs). |