File size: 12,919 Bytes
814c8cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""
Ability to train vq-vae and prior
First try for random inputs
Then from maestros
"""
import sys
import fire
import warnings
import numpy as np
import torch as t
import jukebox.utils.dist_adapter as dist
from torch.nn.parallel import DistributedDataParallel

from jukebox.hparams import setup_hparams
from jukebox.make_models import make_vqvae, make_prior, restore_opt, save_checkpoint
from jukebox.utils.logger import init_logging
from jukebox.utils.audio_utils import audio_preprocess, audio_postprocess
from jukebox.utils.torch_utils import zero_grad, count_parameters
from jukebox.utils.dist_utils import print_once, allreduce, allgather
from jukebox.utils.ema import CPUEMA, FusedEMA, EMA
from jukebox.utils.fp16 import FP16FusedAdam, FusedAdam, LossScalar, clipped_grad_scale, backward
from jukebox.data.data_processor import DataProcessor

def prepare_aud(x, hps):
    x = audio_postprocess(x.detach().contiguous(), hps)
    return allgather(x)

def log_aud(logger, tag, x, hps):
    logger.add_audios(tag, prepare_aud(x, hps), hps.sr, max_len=hps.max_len, max_log=hps.max_log)
    logger.flush()

def log_labels(logger, labeller, tag, y, hps):
    y = y.cpu().numpy()
    txt = ''
    for item in range(y.shape[0]):
        description = labeller.describe_label(y[item])
        artist, genre, lyrics = description['artist'], description['genre'], description['lyrics']
        txt += f'{item} artist:{artist}, genre:{genre}, lyrics:{lyrics}\n'
    logger.add_text(tag, txt)
    logger.flush()

def get_ddp(model, hps):
    rank = dist.get_rank()
    local_rank = rank % 8
    ddp = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank, broadcast_buffers=False, bucket_cap_mb=hps.bucket)
    return ddp

def get_ema(model, hps):
    mu = hps.mu or (1. - (hps.bs * hps.ngpus/8.)/1000)
    ema = None
    if hps.ema and hps.train:
        if hps.cpu_ema:
            if dist.get_rank() == 0:
                print("Using CPU EMA")
            ema = CPUEMA(model.parameters(), mu=mu, freq=hps.cpu_ema_freq)
        elif hps.ema_fused:
            ema = FusedEMA(model.parameters(), mu=mu)
        else:
            ema = EMA(model.parameters(), mu=mu)
    return ema

def get_lr_scheduler(opt, hps):
    def lr_lambda(step):
        if hps.lr_use_linear_decay:
            lr_scale = hps.lr_scale * min(1.0, step / hps.lr_warmup)
            decay = max(0.0, 1.0 - max(0.0, step - hps.lr_start_linear_decay) / hps.lr_decay)
            if decay == 0.0:
                if dist.get_rank() == 0:
                    print("Reached end of training")
            return lr_scale * decay
        else:
            return hps.lr_scale * (hps.lr_gamma ** (step // hps.lr_decay)) * min(1.0, step / hps.lr_warmup)

    shd = t.optim.lr_scheduler.LambdaLR(opt, lr_lambda)

    return shd

def get_optimizer(model, hps):
    # Optimizer
    betas = (hps.beta1, hps.beta2)
    if hps.fp16_opt:
        opt = FP16FusedAdam(model.parameters(), lr=hps.lr, weight_decay=hps.weight_decay, betas=betas, eps=hps.eps)
    else:
        opt = FusedAdam(model.parameters(), lr=hps.lr, weight_decay=hps.weight_decay, betas=betas, eps=hps.eps)

    # lr scheduler
    shd = get_lr_scheduler(opt, hps)

    restore_path = hps.restore_prior if hps.prior else hps.restore_vqvae
    restore_opt(opt, shd, restore_path)

    # fp16 dynamic loss scaler
    scalar = None
    if hps.fp16:
        rank = dist.get_rank()
        local_rank = rank % 8
        scalar = LossScalar(hps.fp16_loss_scale, scale_factor=2 ** (1./hps.fp16_scale_window))
        if local_rank == 0: print(scalar.__dict__)

    zero_grad(model)
    return opt, shd, scalar

def log_inputs(orig_model, logger, x_in, y, x_out, hps, tag="train"):
    print(f"Logging {tag} inputs/ouputs")
    log_aud(logger, f'{tag}_x_in', x_in, hps)
    log_aud(logger, f'{tag}_x_out', x_out, hps)
    bs = x_in.shape[0]
    if hps.prior:
        if hps.labels:
            log_labels(logger, orig_model.labeller, f'{tag}_y_in', allgather(y.cuda()), hps)
    else:
        zs_in = orig_model.encode(x_in, start_level=0, bs_chunks=bs)
        x_ds = [orig_model.decode(zs_in[level:], start_level=level, bs_chunks=bs) for level in range(0, hps.levels)]
        for i in range(len(x_ds)):
            log_aud(logger, f'{tag}_x_ds_start_{i}', x_ds[i], hps)
    logger.flush()

def sample_prior(orig_model, ema, logger, x_in, y, hps):
    if ema is not None: ema.swap()
    orig_model.eval()

    x_in = x_in[:hps.bs_sample]
    bs = x_in.shape[0]
    zs_in = orig_model.encode(x_in, start_level=0, bs_chunks=bs)
    assert len(zs_in) == hps.levels
    x_ds = [orig_model.decode(zs_in[level:], start_level=level, bs_chunks=bs) for level in range(0, hps.levels)]

    if not hps.labels:
        y = None
    elif hps.level == (hps.levels - 1):
        # Topmost level labels in order
        y = y[:hps.bs_sample]  # t.ones((hps.bs_sample, 1), device=y.device, dtype=t.long) * dist.get_rank()
    else:
        # Other levels keep labels to match x_cond
        y = y[:hps.bs_sample]

    # Temp 1.0
    _, *z_conds = orig_model.encode(x_in, bs_chunks=bs)
    z = orig_model.sample(hps.bs_sample, z_conds=z_conds, y=y, fp16=False, temp=1.0)
    x_sample = orig_model.decode([z, *z_conds], bs_chunks=bs)

    log_aud(logger, 'sample_x_T1', x_sample, hps)
    if hps.prior and hps.labels:
        log_labels(logger, orig_model.labeller, f'sample_x_T1', allgather(y.cuda()), hps)

    # Recons
    for i in range(len(x_ds)):
        log_aud(logger, f'x_ds_start_{i}', x_ds[i], hps)
    orig_model.train()
    if ema is not None: ema.swap()
    logger.flush()

def evaluate(model, orig_model, logger, metrics, data_processor, hps):
    model.eval()
    orig_model.eval()
    if hps.prior:
        _print_keys = dict(l="loss", bpd="bpd")
    else:
        _print_keys = dict(l="loss", rl="recons_loss", sl="spectral_loss")

    with t.no_grad():
        for i, x in logger.get_range(data_processor.test_loader):
            if isinstance(x, (tuple, list)):
                x, y = x
            else:
                y = None

            x = x.to('cuda', non_blocking=True)
            if y is not None:
                y = y.to('cuda', non_blocking=True)

            x_in = x = audio_preprocess(x, hps)
            log_input_output = (i==0)

            if hps.prior:
                forw_kwargs = dict(y=y, fp16=hps.fp16, decode=log_input_output)
            else:
                forw_kwargs = dict(loss_fn=hps.loss_fn, hps=hps)

            x_out, loss, _metrics = model(x, **forw_kwargs)

            # Logging
            for key, val in _metrics.items():
                _metrics[key] = val.item()
            _metrics["loss"] = loss = loss.item() # Make sure to call to free graph

            # Average and log
            for key, val in _metrics.items():
                _metrics[key] = metrics.update(f"test_{key}", val, x.shape[0])

            with t.no_grad():
                if log_input_output:
                    log_inputs(orig_model, logger, x_in, y, x_out, hps)

            logger.set_postfix(**{print_key:_metrics[key] for print_key, key in _print_keys.items()})

    for key, val in _metrics.items():
        logger.add_scalar(f"test_{key}", metrics.avg(f"test_{key}"))

    logger.close_range()
    return {key: metrics.avg(f"test_{key}") for key in _metrics.keys()}

def train(model, orig_model, opt, shd, scalar, ema, logger, metrics, data_processor, hps):
    model.train()
    orig_model.train()
    if hps.prior:
        _print_keys = dict(l="loss", bpd="bpd", gn="gn", g_l="gen_loss", p_l="prime_loss")
    else:
        _print_keys = dict(l="loss", sl="spectral_loss", rl="recons_loss", e="entropy", u="usage", uc="used_curr", gn="gn", pn="pn", dk="dk")

    for i, x in logger.get_range(data_processor.train_loader):
        if isinstance(x, (tuple, list)):
            x, y = x
        else:
            y = None

        x = x.to('cuda', non_blocking=True)
        if y is not None:
            y = y.to('cuda', non_blocking=True)

        x_in = x = audio_preprocess(x, hps)
        log_input_output = (logger.iters % hps.save_iters == 0)

        if hps.prior:
            forw_kwargs = dict(y=y, fp16=hps.fp16, decode=log_input_output)
        else:
            forw_kwargs = dict(loss_fn=hps.loss_fn, hps=hps)

        # Forward
        x_out, loss, _metrics = model(x, **forw_kwargs)

        # Backward
        loss, scale, grad_norm, overflow_loss, overflow_grad = backward(loss=loss, params=list(model.parameters()),
                                                                         scalar=scalar, fp16=hps.fp16, logger=logger)
        # Skip step if overflow
        grad_norm = allreduce(grad_norm, op=dist.ReduceOp.MAX)
        if overflow_loss or overflow_grad or grad_norm > hps.ignore_grad_norm > 0:
            zero_grad(orig_model)
            continue

        # Step opt. Divide by scale to include clipping and fp16 scaling
        logger.step()
        opt.step(scale=clipped_grad_scale(grad_norm, hps.clip, scale))
        zero_grad(orig_model)
        lr = hps.lr if shd is None else shd.get_lr()[0]
        if shd is not None: shd.step()
        if ema is not None: ema.step()
        next_lr = hps.lr if shd is None else shd.get_lr()[0]
        finished_training = (next_lr == 0.0)

        # Logging
        for key, val in _metrics.items():
            _metrics[key] = val.item()
        _metrics["loss"] = loss = loss.item() * hps.iters_before_update # Make sure to call to free graph
        _metrics["gn"] = grad_norm
        _metrics["lr"] = lr
        _metrics["lg_loss_scale"] = np.log2(scale)

        # Average and log
        for key, val in _metrics.items():
            _metrics[key] = metrics.update(key, val, x.shape[0])
            if logger.iters % hps.log_steps == 0:
                logger.add_scalar(key, _metrics[key])

        # Save checkpoint
        with t.no_grad():
            if hps.save and (logger.iters % hps.save_iters == 1 or finished_training):
                if ema is not None: ema.swap()
                orig_model.eval()
                name = 'latest' if hps.prior else f'step_{logger.iters}'
                if dist.get_rank() % 8 == 0:
                    save_checkpoint(logger, name, orig_model, opt, dict(step=logger.iters), hps)
                orig_model.train()
                if ema is not None: ema.swap()

        # Sample
        with t.no_grad():
            if (logger.iters % 12000) in list(range(1, 1 + hps.iters_before_update)) or finished_training:
                if hps.prior:
                    sample_prior(orig_model, ema, logger, x_in, y, hps)

        # Input/Output
        with t.no_grad():
            if log_input_output:
                log_inputs(orig_model, logger, x_in, y, x_out, hps)

        logger.set_postfix(**{print_key:_metrics[key] for print_key, key in _print_keys.items()})
        if finished_training:
            dist.barrier()
            exit()
    logger.close_range()
    return {key: metrics.avg(key) for key in _metrics.keys()}

def run(hps="teeny", port=29500, **kwargs):
    from jukebox.utils.dist_utils import setup_dist_from_mpi
    rank, local_rank, device = setup_dist_from_mpi(port=port)
    hps = setup_hparams(hps, kwargs)
    hps.ngpus = dist.get_world_size()
    hps.argv = " ".join(sys.argv)
    hps.bs_sample = hps.nworkers = hps.bs

    # Setup dataset
    data_processor = DataProcessor(hps)

    # Setup models
    vqvae = make_vqvae(hps, device)
    print_once(f"Parameters VQVAE:{count_parameters(vqvae)}")
    if hps.prior:
        prior = make_prior(hps, vqvae, device)
        print_once(f"Parameters Prior:{count_parameters(prior)}")
        model = prior
    else:
        model = vqvae

    # Setup opt, ema and distributed_model.
    opt, shd, scalar = get_optimizer(model, hps)
    ema = get_ema(model, hps)
    distributed_model = get_ddp(model, hps)

    logger, metrics = init_logging(hps, local_rank, rank)
    logger.iters = model.step

    # Run training, eval, sample
    for epoch in range(hps.curr_epoch, hps.epochs):
        metrics.reset()
        data_processor.set_epoch(epoch)
        if hps.train:
            train_metrics = train(distributed_model, model, opt, shd, scalar, ema, logger, metrics, data_processor, hps)
            train_metrics['epoch'] = epoch
            if rank == 0:
                print('Train',' '.join([f'{key}: {val:0.4f}' for key,val in train_metrics.items()]))
            dist.barrier()

        if hps.test:
            if ema: ema.swap()
            test_metrics = evaluate(distributed_model, model, logger, metrics, data_processor, hps)
            test_metrics['epoch'] = epoch
            if rank == 0:
                print('Ema',' '.join([f'{key}: {val:0.4f}' for key,val in test_metrics.items()]))
            dist.barrier()
            if ema: ema.swap()
        dist.barrier()

if __name__ == '__main__':
    fire.Fire(run)