Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,958 Bytes
6f590b8
035424f
 
2fe7624
035424f
 
2fe7624
 
 
13b914e
59eb068
 
2e8ce75
 
59eb068
 
 
 
 
 
 
 
 
 
2e8ce75
59eb068
 
2e8ce75
59eb068
 
2e8ce75
59eb068
2e8ce75
 
59eb068
13b914e
9de2b95
 
13b914e
 
 
 
 
 
 
 
 
 
9de2b95
13b914e
 
9de2b95
13b914e
26e8c9b
9de2b95
13b914e
59eb068
 
 
 
 
 
 
 
13b914e
 
 
 
 
 
6f590b8
 
 
035424f
 
 
 
 
 
e57df94
035424f
 
 
 
 
e57df94
035424f
 
 
 
e57df94
 
035424f
 
8078537
 
 
035424f
 
 
8078537
b3c20ae
e57df94
 
b3c20ae
e57df94
 
 
 
b3c20ae
 
a52c23e
e57df94
035424f
 
8078537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035424f
 
 
 
 
 
 
e57df94
e932468
 
16d9d25
 
 
 
8078537
16d9d25
 
 
 
e932468
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
language:
- en
license: mit
size_categories:
- 1K<n<10K
task_categories:
- text-generation
- question-answering
dataset_info:
- config_name: default
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  splits:
  - name: train
    num_bytes: 5373420.477987422
    num_examples: 7273
  - name: validation
    num_bytes: 147763.5220125786
    num_examples: 200
  - name: test
    num_bytes: 993169
    num_examples: 1319
  download_size: 3140154
  dataset_size: 6514353.0
- config_name: original-splits
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  splits:
  - name: train
    num_bytes: 5521184
    num_examples: 7473
  - name: test
    num_bytes: 993169
    num_examples: 1319
  download_size: 0
  dataset_size: 6514353
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: original-splits
  data_files:
  - split: train
    path: original-splits/train-*
  - split: test
    path: original-splits/test-*
---
# Dataset Card for "Calc-gsm8k"


## Summary

This dataset is an instance of gsm8k dataset, converted to a simple html-like language that can be easily parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:
- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer to the mathematical problem (a number)


## Supported Tasks

The dataset is intended for training Chain-of-Thought reasoning **models able to use external tools** to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.


## Construction Process

The answers in the original dataset were in a structured but non-standard format. So, the answers were parsed, all arithmetical expressions
were evaluated using a sympy-based calculator, the outputs were checked to be consistent with the intermediate results and exported
into a simple html-like language that BeautifulSoup can parse.

We also perform in-dataset and cross-dataset data-leak detection within the [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483)
However, in case of gsm8k, we found no data leaks and removed no examples from the data.


## Content and Data splits

For convenience, we created a validation set by sampling 200 random examples from the original train split. This is the default variant:

```python3
datasets.load_dataset("MU-NLPC/Calc-gsm8k")
```

The original data splits can be loaded using:

```python3
datasets.load_dataset("MU-NLPC/Calc-gsm8k", "original-splits")
```

For more info about the content of the dataset, see [gsm8k HF dataset](https://huggingface.co/datasets/gsm8k) and the [official repository](https://github.com/openai/grade-school-math).



## Related work

This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.

- [**Calc-X collection**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) - datasets for training Calcformers
- [**Calcformers collection**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - calculator-using models we trained and published on HF
- [**Calc-X and Calcformers paper**](https://arxiv.org/abs/2305.15017)
- [**Calc-X and Calcformers repo**](https://github.com/prompteus/calc-x)

Here are links to the original dataset:

- [**original gsm8k dataset**](https://huggingface.co/datasets/gsm8k)
- [**original gsm8k paper**](https://arxiv.org/abs/2110.14168)
- [**original gsm8k repo**](https://github.com/openai/grade-school-math)



## Licence

MIT, consistently with the original dataset.


## Cite

If you use this version of the dataset in research, please cite the [original GSM8K paper](https://arxiv.org/abs/2110.14168), and [Calc-X collection](https://arxiv.org/abs/2305.15017) as follows:

```bibtex
@inproceedings{kadlcik-etal-2023-soft,
    title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
    author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
    booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
    month = dec,
    year = "2023",
    address = "Singapore, Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2305.15017",
}
```