File size: 6,201 Bytes
93ce212 a0edd0c 93baf31 a0edd0c d98509d a0edd0c ba0f240 a0edd0c ba0f240 a0edd0c ba0f240 a0edd0c ba0f240 a0edd0c 93baf31 a0edd0c ba0f240 a0edd0c 93ce212 1693598 0a3e4cd 1693598 465abe8 1693598 a42960f 1693598 a42960f 1693598 bab6fe4 1693598 a42960f 12918c9 ae33ea1 a42960f 12918c9 a42960f ae33ea1 a42960f 12918c9 1693598 7f5edf4 44e4f17 7f5edf4 44e4f17 1693598 465abe8 1693598 92ff951 465abe8 92ff951 1693598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
license: mit
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: question
dtype: string
- name: question_chinese
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: result_float
dtype: float64
- name: equation
dtype: string
splits:
- name: train
num_bytes: 111988047
num_examples: 195179
- name: validation
num_bytes: 1172933
num_examples: 1783
- name: test
num_bytes: 1157061
num_examples: 1785
download_size: 50827709
dataset_size: 114318041
- config_name: original-splits
features:
- name: id
dtype: string
- name: question
dtype: string
- name: question_chinese
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: result_float
dtype: float64
- name: equation
dtype: string
splits:
- name: test
num_bytes: 2784396
num_examples: 4867
- name: train
num_bytes: 111628273
num_examples: 195179
- name: validation
num_bytes: 2789481
num_examples: 4867
download_size: 52107586
dataset_size: 117202150
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: original-splits
data_files:
- split: test
path: original-splits/test-*
- split: train
path: original-splits/train-*
- split: validation
path: original-splits/validation-*
---
# Dataset Card for Calc-ape210k
## Summary
This dataset is an instance of Ape210K dataset, converted to a simple HTML-like language that can be easily parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:
- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer to the mathematical problem (a number)
## Supported Tasks
The dataset is intended for training Chain-of-Thought reasoning **models able to use external tools** to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.
## Construction Process
First, we translated the questions into English using Google Translate. Next, we parsed the equations and the results. We linearized
the equations into a sequence of elementary steps and evaluated them using a sympy-based calculator. We numerically compare the output
with the result in the data and remove all examples where they do not match (less than 3% loss in each split). Finally, we save the
chain of steps in the HTML-like language in the `chain` column. We keep the original columns in the dataset for convenience. We also perform
in-dataset and cross-dataset data-leak detection within [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
Specifically for Ape210k, we removed parts of the validation and test split, with around 1700 remaining in each.
You can read more information about this process in our [Calc-X paper](https://arxiv.org/abs/2305.15017).
## Data splits
The default config contains filtered splits with data leaks removed.
You can load it using:
```python
datasets.load_dataset("MU-NLPC/calc-ape210k")
```
In the `original-splits` config, the data splits are unfiltered and correspond to the original Ape210K dataset. See [ape210k dataset github](https://github.com/Chenny0808/ape210k) and [the paper](https://arxiv.org/abs/2009.11506) for more info.
You can load it using:
```python
datasets.load_dataset("MU-NLPC/calc-ape210k", "original-splits")
```
## Attributes
- **id** - id of the example
- **question** - the description of the math problem. Automatically translated from the `question_chinese` column into English using Google Translate
- **question_chinese** - the original description of the math problem in Chinese
- **chain** - linearized `equation`, sequence of arithmetic steps in HTML-like language that can be evaluated using our sympy-based calculator
- **result** - result as a string (can be an integer, float, or a fraction)
- **result_float** - result, converted to a float
- **equation** - a nested expression that evaluates to the correct answer
Attributes **id**, **question**, **chain**, and **result** are present in all datasets in [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
## Related work
This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.
- [**Calc-X collection**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) - datasets for training Calcformers
- [**Calcformers collection**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - calculator-using models we trained and published on HF
- [**Calc-X and Calcformers paper**](https://arxiv.org/abs/2305.15017)
- [**Calc-X and Calcformers repo**](https://github.com/prompteus/calc-x)
Here are links to the original dataset:
- [**original Ape210k dataset and repo**](https://github.com/Chenny0808/ape210k)
- [**original Ape210k paper**](https://arxiv.org/abs/2009.11506)
## Licence
MIT, consistently with the original dataset.
## Cite
If you use this version of the dataset in research, please cite the [original Ape210k paper](https://arxiv.org/abs/2009.11506), and the [Calc-X paper](https://arxiv.org/abs/2305.15017) as follows:
```bibtex
@inproceedings{kadlcik-etal-2023-soft,
title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
month = dec,
year = "2023",
address = "Singapore, Singapore",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2305.15017",
}
``` |