File size: 25,252 Bytes
264e00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import gzip
import io
import json
import os
import re
from typing import Callable, Optional, List, Tuple, Dict, Union, Any

import pandas as pd


def geo_get_relevant_filepaths(cohort_dir: str) -> Tuple[str, str]:
    """Find the file paths of a SOFT file and a matrix file from the given data directory of a cohort.
    If there are multiple SOFT files or matrix files, simply choose the first one. Used for the GEO dataset.
    """
    files = os.listdir(cohort_dir)
    soft_files = [f for f in files if 'soft' in f.lower()]
    matrix_files = [f for f in files if 'matrix' in f.lower()]
    assert len(soft_files) > 0 and len(matrix_files) > 0
    soft_file_path = os.path.join(cohort_dir, soft_files[0])
    matrix_file_path = os.path.join(cohort_dir, matrix_files[0])

    return soft_file_path, matrix_file_path


def tcga_get_relevant_filepaths(cohort_dir: str) -> Tuple[str, str]:
    """Find the file paths of a clinical file and a genetic file from the given data directory of a cohort.
    If there are multiple clinical or genetic data files, simply choose the first one. Used for the TCGA Xena dataset.
    """
    files = os.listdir(cohort_dir)
    clinical_files = [f for f in files if 'clinicalmatrix' in f.lower()]
    genetic_files = [f for f in files if 'pancan' in f.lower()]
    clinical_file_path = os.path.join(cohort_dir, clinical_files[0])
    genetic_file_path = os.path.join(cohort_dir, genetic_files[0])
    return clinical_file_path, genetic_file_path


def line_generator(source: str, source_type: str) -> str:
    """Generator that yields lines from a file or a string.

    Parameters:
    - source: File path or string content.
    - source_type: 'file' or 'string'.
    """
    if source_type == 'file':
        with gzip.open(source, 'rt') as f:
            for line in f:
                yield line.strip()
    elif source_type == 'string':
        for line in source.split('\n'):
            yield line.strip()
    else:
        raise ValueError("source_type must be 'file' or 'string'")


def filter_content_by_prefix(
        source: str,
        prefixes_a: List[str],
        prefixes_b: Optional[List[str]] = None,
        unselect: bool = False,
        source_type: str = 'file',
        return_df_a: bool = True,
        return_df_b: bool = True
) -> Tuple[Union[str, pd.DataFrame], Optional[Union[str, pd.DataFrame]]]:
    """
    Filters rows from a file or a list of strings based on specified prefixes.

    Parameters:
    - source (str): File path or string content to filter.
    - prefixes_a (List[str]): Primary list of prefixes to filter by.
    - prefixes_b (Optional[List[str]]): Optional secondary list of prefixes to filter by.
    - unselect (bool): If True, selects rows that do not start with the specified prefixes.
    - source_type (str): 'file' if source is a file path, 'string' if source is a string of text.
    - return_df_a (bool): If True, returns filtered content for prefixes_a as a pandas DataFrame.
    - return_df_b (bool): If True, and if prefixes_b is provided, returns filtered content for prefixes_b as a pandas DataFrame.

    Returns:
    - Tuple: A tuple where the first element is the filtered content for prefixes_a, and the second element is the filtered content for prefixes_b.
    """
    filtered_lines_a = []
    filtered_lines_b = []
    prefix_set_a = set(prefixes_a)
    if prefixes_b is not None:
        prefix_set_b = set(prefixes_b)

    # Use generator to get lines
    for line in line_generator(source, source_type):
        matched_a = any(line.startswith(prefix) for prefix in prefix_set_a)
        if matched_a != unselect:
            filtered_lines_a.append(line)
        if prefixes_b is not None:
            matched_b = any(line.startswith(prefix) for prefix in prefix_set_b)
            if matched_b != unselect:
                filtered_lines_b.append(line)

    filtered_content_a = '\n'.join(filtered_lines_a)
    if return_df_a:
        filtered_content_a = pd.read_csv(io.StringIO(filtered_content_a), delimiter='\t', low_memory=False,
                                         on_bad_lines='skip')
    filtered_content_b = None
    if filtered_lines_b:
        filtered_content_b = '\n'.join(filtered_lines_b)
        if return_df_b:
            filtered_content_b = pd.read_csv(io.StringIO(filtered_content_b), delimiter='\t', low_memory=False,
                                             on_bad_lines='skip')

    return filtered_content_a, filtered_content_b


def get_background_and_clinical_data(file_path: str,
                                     prefixes_a: List[str] = ['!Series_title', '!Series_summary',
                                                              '!Series_overall_design'],
                                     prefixes_b: List[str] = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
                                     ) -> Tuple[str, pd.DataFrame]:
    """Extract background information and clinical data from a matrix file."""
    background_info, clinical_data = filter_content_by_prefix(file_path, prefixes_a, prefixes_b, unselect=False,
                                                              source_type='file',
                                                              return_df_a=False, return_df_b=True)
    return background_info, clinical_data


def get_gene_annotation(file_path: str, prefixes: List[str] = ['^', '!', '#']) -> pd.DataFrame:
    """Extract gene annotation data from a SOFT file."""
    gene_metadata = filter_content_by_prefix(file_path, prefixes_a=prefixes, unselect=True, source_type='file',
                                             return_df_a=True)
    return gene_metadata[0]


def get_gene_mapping(annotation: pd.DataFrame, prob_col: str, gene_col: str) -> pd.DataFrame:
    """Process gene annotation to get mapping between gene names and probes."""
    mapping_data = annotation.loc[:, [prob_col, gene_col]]
    mapping_data = mapping_data.dropna()
    mapping_data = mapping_data.rename(columns={gene_col: 'Gene'}).astype({'ID': 'str'})

    return mapping_data


def get_genetic_data(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame:
    """Read the gene expression data into a dataframe, and adjust its format"""
    # Determine the number of rows to skip
    with gzip.open(file_path, 'rt') as file:
        for i, line in enumerate(file):
            if marker in line:
                skip_rows = i + 1  # +1 to skip the marker row itself
                break
        else:
            raise ValueError(f"Marker '{marker}' not found in the file.")

    # Read the genetic data into a dataframe
    genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows, comment='!', delimiter='\t',
                               on_bad_lines='skip')
    genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}).astype({'ID': 'str'})
    genetic_data.set_index('ID', inplace=True)

    return genetic_data


def extract_human_gene_symbols(text: str) -> List[str]:
    """
    Extract a list of likely human gene symbols from (often messy) GEO annotation text.
    Includes both canonical symbols and the C#orf# pattern (e.g., C10orf54).
    Excludes transcripts/predictions starting with NR_, XR_, LOC\d+, LINC\d+.
    Filters out a few trivial lab terms (DNA, RNA, PCR, EST, CHR).
    """

    # Explanation:
    # (?!NR_|XR_|LOC\d+|LINC\d+)     Negative lookahead to exclude undesired prefixes.
    # (?: ...|... )                 Group of alternatives:
    #   [A-Z][A-Z0-9-]{1,9}         The basic pattern: start uppercase + up to 9 more uppercase letters, digits or dashes.
    #   C\d+orf\d+                  The special orf pattern (case-insensitive for "orf"? 
    #                               Usually official symbol is 'orf' in lowercase, so let's keep it as is).
    #
    # \b Word boundaries to ensure we capture whole tokens.
    pattern = (
        r"\b"
        r"(?!NR_|XR_|LOC\d+|LINC\d+)"
        r"(?:[A-Z][A-Z0-9-]{1,9}|C\d+orf\d+)"
        r"\b"
    )

    if not isinstance(text, str):
        return []

    candidates = re.findall(pattern, text)

    # Exclude trivial lab terms
    exclude_simple = {"DNA", "RNA", "PCR", "EST", "CHR"}
    filtered = [c for c in candidates if c not in exclude_simple]

    # Deduplicate in the order found
    return list(dict.fromkeys(filtered))


def apply_gene_mapping(expression_df: pd.DataFrame, mapping_df: pd.DataFrame) -> pd.DataFrame:
    """
    Convert measured data about gene probes into gene expression data.
    If a probe maps to n genes, each gene gets expression / n. Then we sum across all probes for each gene.

    Parameters:
    expression_df (DataFrame): A DataFrame with gene expression data, indexed by 'ID'.
    mapping_df (DataFrame): A DataFrame mapping 'ID' to 'Gene', with 'ID' as a column.

    Returns:
    DataFrame: A DataFrame with summed gene expression values, indexed by 'Gene'.
    """
    mapping_df = mapping_df[mapping_df['ID'].isin(expression_df.index)].copy()
    mapping_df['Gene'] = mapping_df['Gene'].apply(extract_human_gene_symbols)

    # Count genes per probe and expand to one gene per row
    mapping_df['num_genes'] = mapping_df['Gene'].apply(len)
    mapping_df = mapping_df.explode('Gene')
    # Empty list becomes NaN after explode, which should be dropped
    mapping_df = mapping_df.dropna(subset=['Gene'])
    mapping_df.set_index('ID', inplace=True)

    # Merge and distribute expression values
    merged_df = mapping_df.join(expression_df)
    expr_cols = [col for col in merged_df.columns if col not in ['Gene', 'num_genes']]
    merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'].replace(0, 1), axis=0)

    # Sum expression values for each gene
    gene_expression_df = merged_df.groupby('Gene')[expr_cols].sum()

    return gene_expression_df


def normalize_gene_symbols_in_index(gene_df: pd.DataFrame) -> pd.DataFrame:
    """Use gene synonym information extracted from the NCBI Gene database to normalize gene symbols in dataframe index,
    and aggregate rows with same normalized symbol.
    """
    with open("../../metadata/gene_synonym.json", "r") as f:
        synonym_dict = json.load(f)
    gene_df.index = gene_df.index.str.upper().map(lambda x: synonym_dict.get(x))
    gene_df = gene_df[gene_df.index.notnull()]
    gene_df = gene_df.groupby(gene_df.index).mean()

    return gene_df


def get_feature_data(clinical_df: pd.DataFrame, row_id: int, feature: str, convert_fn: Callable) -> pd.DataFrame:
    """Extract and convert a feature row from clinical data."""
    # Get the row as a DataFrame using iloc[row_id:row_id + 1]
    df = clinical_df.iloc[row_id:row_id + 1].drop(columns=['!Sample_geo_accession'], errors='ignore')
    # Set the index name to the feature
    df.index = [feature]
    # Apply conversion function to all elements
    df = df.map(convert_fn).astype(float)
    return df


def judge_binary_variable_biased(dataframe: pd.DataFrame, col_name: str, min_proportion: float = 0.1,
                                 min_num: int = 5) -> bool:
    """Check if a binary variable's distribution is too biased for analysis."""
    label_counter = dataframe[col_name].value_counts()
    total_samples = len(dataframe)
    rare_label_num = label_counter.min()
    rare_label = label_counter.idxmin()
    rare_label_proportion = rare_label_num / total_samples

    print(
        f"For the feature \'{col_name}\', the least common label is '{rare_label}' with {rare_label_num} occurrences. This represents {rare_label_proportion:.2%} of the dataset.")

    biased = (len(label_counter) < 2) or ((rare_label_proportion < min_proportion) and (rare_label_num < min_num))
    return bool(biased)


def judge_continuous_variable_biased(dataframe: pd.DataFrame, col_name: str) -> bool:
    """Check if the distribution of a continuous variable in the dataset is too biased to be usable for analysis.
    As a starting point, we consider it biased if all values are the same. For the next step, maybe ask GPT to judge
    based on quartile statistics combined with its common sense knowledge about this feature.
    """
    quartiles = dataframe[col_name].quantile([0.25, 0.5, 0.75])
    min_value = dataframe[col_name].min()
    max_value = dataframe[col_name].max()

    # Printing quartile information
    print(f"Quartiles for '{col_name}':")
    print(f"  25%: {quartiles[0.25]}")
    print(f"  50% (Median): {quartiles[0.5]}")
    print(f"  75%: {quartiles[0.75]}")
    print(f"Min: {min_value}")
    print(f"Max: {max_value}")

    biased = min_value == max_value

    return bool(biased)


def tcga_convert_trait(row_index: str) -> int:
    """Convert TCGA sample IDs to binary trait labels based on last two digits.
    Tumor types range from 01 - 09, normal types from 10 - 19.
    """
    last_two_digits = int(row_index[-2:])

    if 1 <= last_two_digits <= 9:
        return 1
    elif 10 <= last_two_digits <= 19:
        return 0
    else:
        return -1


def tcga_convert_gender(cell: str) -> Optional[int]:
    """Convert gender strings to binary values (0: female, 1: male)."""
    if isinstance(cell, str):
        cell = cell.lower()

    if cell == "female":
        return 0
    elif cell == "male":
        return 1
    else:
        return None


def tcga_convert_age(cell: str) -> Optional[int]:
    """Extract age value from string using regex."""
    match = re.search(r'\d+', str(cell))
    if match:
        return int(match.group())
    else:
        return None


def get_unique_values_by_row(dataframe: pd.DataFrame, max_len: int = 30) -> Dict[str, List[Any]]:
    """Organize the unique values in each row of the given dataframe, to get a dictionary."""
    if '!Sample_geo_accession' in dataframe.columns:
        dataframe = dataframe.drop(columns=['!Sample_geo_accession'])
    unique_values_dict = {}
    for index, row in dataframe.iterrows():
        unique_values = list(row.unique())[:max_len]
        unique_values_dict[index] = unique_values
    return unique_values_dict


def tcga_select_clinical_features(clinical_df: pd.DataFrame, trait: str,
                                  age_col: Optional[str] = None,
                                  gender_col: Optional[str] = None) -> pd.DataFrame:
    """Select and process clinical features from TCGA Xena data."""
    feature_list = []
    trait_data = clinical_df.index.to_series().apply(tcga_convert_trait).rename(trait)
    feature_list.append(trait_data)
    if age_col:
        age_data = clinical_df[age_col].apply(tcga_convert_age).rename("Age")
        feature_list.append(age_data)
    if gender_col:
        gender_data = clinical_df[gender_col].apply(tcga_convert_gender).rename("Gender")
        feature_list.append(gender_data)
    selected_clinical_df = pd.concat(feature_list, axis=1)
    return selected_clinical_df


def geo_select_clinical_features(clinical_df: pd.DataFrame, trait: str, trait_row: int,
                                 convert_trait: Callable,
                                 age_row: Optional[int] = None,
                                 convert_age: Optional[Callable] = None,
                                 gender_row: Optional[int] = None,
                                 convert_gender: Optional[Callable] = None) -> pd.DataFrame:
    """
    Extracts and processes specific clinical features from a DataFrame representing
    sample characteristics in the GEO database series.

    Parameters:
    - clinical_df (pd.DataFrame): DataFrame containing clinical data.
    - trait (str): The trait of interest.
    - trait_row (int): Row identifier for the trait in the DataFrame.
    - convert_trait (Callable): Function to convert trait data into a desired format.
    - age_row (int, optional): Row identifier for age data. Default is None.
    - convert_age (Callable, optional): Function to convert age data. Default is None.
    - gender_row (int, optional): Row identifier for gender data. Default is None.
    - convert_gender (Callable, optional): Function to convert gender data. Default is None.

    Returns:
    pd.DataFrame: A DataFrame containing the selected and processed clinical features.
    """
    feature_list = []

    trait_data = get_feature_data(clinical_df, trait_row, trait, convert_trait)
    feature_list.append(trait_data)
    if age_row is not None:
        age_data = get_feature_data(clinical_df, age_row, 'Age', convert_age)
        feature_list.append(age_data)
    if gender_row is not None:
        gender_data = get_feature_data(clinical_df, gender_row, 'Gender', convert_gender)
        feature_list.append(gender_data)

    selected_clinical_df = pd.concat(feature_list, axis=0)
    return selected_clinical_df


def geo_link_clinical_genetic_data(clinical_df: pd.DataFrame, genetic_df: pd.DataFrame) -> pd.DataFrame:
    """
    Link clinical and genetic data to get a dataframe for associational studies.
    """
    # Ensure proper column naming
    if 'ID' in genetic_df.columns:
        genetic_df = genetic_df.rename(columns={'ID': 'Gene'})
    if 'Gene' in genetic_df.columns:
        genetic_df = genetic_df.set_index('Gene')

    linked_data = pd.concat([clinical_df, genetic_df], axis=0).T

    return linked_data


def handle_missing_values(df: pd.DataFrame, trait_col: str) -> pd.DataFrame:
    """
    Handle missing values in gene expression dataset following best practices:
    1. Remove samples with missing trait values
    2. Remove genes with >20% missing values
    3. Remove samples with >5% missing genes
    4. Impute remaining missing values for genes and covariates
    
    Parameters:
    df : pd.DataFrame
        DataFrame containing trait, covariates, and gene expression data
    trait_col : str
        Name of the trait column

    Returns:
    --------
    pd.DataFrame
        Processed dataframe with missing values handled
    """

    # Identify gene columns
    covariate_cols = [trait_col, 'Age', 'Gender']
    gene_cols = [col for col in df.columns if col not in covariate_cols]

    # 1. Drop samples with missing trait
    df = df.dropna(subset=[trait_col])

    # 2. Filter genes with >20% missing values
    gene_missing_pct = df[gene_cols].isna().mean()
    genes_to_keep = gene_missing_pct[gene_missing_pct <= 0.2].index
    df = df[[col for col in df.columns if col in genes_to_keep or col in covariate_cols]]

    # 3. Filter samples with >5% missing genes
    gene_cols = [col for col in df.columns if col not in covariate_cols]
    sample_missing_pct = df[gene_cols].isna().mean(axis=1)
    samples_to_keep = sample_missing_pct[sample_missing_pct <= 0.05].index
    df = df.loc[samples_to_keep]

    # 4. Impute remaining missing values
    if 'Age' in df.columns:
        df['Age'] = df['Age'].fillna(df['Age'].mean())

    if 'Gender' in df.columns:
        mode_result = df['Gender'].mode()
        if len(mode_result) > 0:
            df['Gender'] = df['Gender'].fillna(mode_result[0])
        else:
            # If no mode exists (all NaN), drop the Gender column as it's not useful
            df = df.drop('Gender', axis=1)

    df[gene_cols] = df[gene_cols].fillna(df[gene_cols].mean())

    return df


def judge_and_remove_biased_features(df: pd.DataFrame, trait: str) -> Tuple[bool, pd.DataFrame]:
    """Evaluate and remove biased features from the dataset.
    Checks if trait, age, and gender distributions are biased. Removes age and gender features if they are biased.
    """
    trait_type = 'binary' if len(df[trait].unique()) == 2 else 'continuous'
    if trait_type == "binary":
        trait_biased = judge_binary_variable_biased(df, trait)
    else:
        trait_biased = judge_continuous_variable_biased(df, trait)
    if trait_biased:
        print(f"The distribution of the feature \'{trait}\' in this dataset is severely biased.\n")
    else:
        print(f"The distribution of the feature \'{trait}\' in this dataset is fine.\n")
    if "Age" in df.columns:
        age_biased = judge_continuous_variable_biased(df, 'Age')
        if age_biased:
            print(f"The distribution of the feature \'Age\' in this dataset is severely biased.\n")
            df = df.drop(columns='Age')
        else:
            print(f"The distribution of the feature \'Age\' in this dataset is fine.\n")
    if "Gender" in df.columns:
        gender_biased = judge_binary_variable_biased(df, 'Gender')
        if gender_biased:
            print(f"The distribution of the feature \'Gender\' in this dataset is severely biased.\n")
            df = df.drop(columns='Gender')
        else:
            print(f"The distribution of the feature \'Gender\' in this dataset is fine.\n")

    return trait_biased, df


def validate_and_save_cohort_info(is_final: bool, cohort: str, info_path: str, is_gene_available: bool,
                                  is_trait_available: bool,
                                  is_biased: Optional[bool] = None, df: Optional[pd.DataFrame] = None,
                                  note: str = '') -> bool:
    """
    Validate and save information about the usability and quality of a dataset for statistical analysis.

    Parameters:
    is_final (bool): If True, performs final validation with full data quality checks and records metadata.
                     If False, performs initial filtering on gene and trait data availability, and only records metadata for failed datasets.
    cohort (str): A unique identifier for the dataset.
    info_path (str): File path to the JSON file where records are stored.
    is_gene_available (bool): Indicates whether the dataset contains genetic data
    is_trait_available (bool): Indicates whether the dataset contains trait data

    The below parameters are only used when 'is_final' is True:
    is_biased (bool, optional): Indicates whether the dataset is too biased to be usable.
    df (pandas.DataFrame, optional): The preprocessed dataset.
    note (str, optional): Additional notes about the dataset.

    Returns:
    bool: True if the dataset was completely preprocessed and saved, ready for future statistical analysis. 
    """
    is_usable = False
    if not is_final:
        if is_gene_available and is_trait_available:
            # The dataset passes initial filtering. Return to continue preprocessing.
            return is_usable
        else:
            # The dataset will be filtered out. Record metadata.
            new_record = {"is_usable": False,
                          "is_gene_available": is_gene_available,
                          "is_trait_available": is_trait_available,
                          "is_available": False,
                          "is_biased": None,
                          "has_age": None,
                          "has_gender": None,
                          "sample_size": None,
                          "note": None}
    else:
        # Perform final validation
        if (df is None) or (is_biased is None):
            raise ValueError("For final data validation, 'df' and 'is_biased' must be provided.")
        # Detect abnormality in data and override input indicators
        if len(df) <= 0 or len(df.columns) <= 4:
            print(f"Abnormality detected in the cohort: {cohort}. Preprocessing failed.")
            is_gene_available = False
            if len(df) <= 0:
                is_trait_available = False
        is_available = is_gene_available and is_trait_available

        is_usable = is_available and (is_biased is False)
        new_record = {"is_usable": is_usable,
                      "is_gene_available": is_gene_available,
                      "is_trait_available": is_trait_available,
                      "is_available": is_available,
                      "is_biased": is_biased if is_available else None,
                      "has_age": "Age" in df.columns if is_available else None,
                      "has_gender": "Gender" in df.columns if is_available else None,
                      "sample_size": len(df) if is_available else None,
                      "note": note}

    trait_directory = os.path.dirname(info_path)
    os.makedirs(trait_directory, exist_ok=True)
    if not os.path.exists(info_path):
        with open(info_path, 'w') as file:
            json.dump({}, file)
        print(f"A new JSON file was created at: {info_path}")

    with open(info_path, "r") as file:
        records = json.load(file)
    records[cohort] = new_record

    temp_path = info_path + ".tmp"
    try:
        with open(temp_path, 'w') as file:
            json.dump(records, file)
        os.replace(temp_path, info_path)

    except Exception as e:
        print(f"An error occurred: {e}")
        if os.path.exists(temp_path):
            os.remove(temp_path)
        raise

    return is_usable


def preview_df(df: pd.DataFrame, n: int = 5, max_items: int = 200) -> Dict[str, Any]:
    """Preview DataFrame contents with limited number of items."""
    # Get the dictionary of the first n rows
    data_dict = df.head(n).to_dict(orient='list')

    # If the dictionary has more than max_items, truncate it
    if len(data_dict) > max_items:
        truncated_dict = {k: data_dict[k] for k in list(data_dict.keys())[:max_items]}
        return truncated_dict
    else:
        return data_dict