File size: 6,159 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b7f97bbf",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:36.065270Z",
     "iopub.status.busy": "2025-03-25T08:31:36.065172Z",
     "iopub.status.idle": "2025-03-25T08:31:36.225401Z",
     "shell.execute_reply": "2025-03-25T08:31:36.225077Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"COVID-19\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/COVID-19/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/COVID-19/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/COVID-19/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/COVID-19/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "12b333cf",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "663977f3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:36.226729Z",
     "iopub.status.busy": "2025-03-25T08:31:36.226599Z",
     "iopub.status.idle": "2025-03-25T08:31:36.231269Z",
     "shell.execute_reply": "2025-03-25T08:31:36.230995Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Looking for a relevant cohort directory for COVID-19...\n",
      "Available cohorts: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "Coronary artery disease-related cohorts: []\n",
      "No suitable cohort found for COVID-19.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "\n",
    "# Check if there's a suitable cohort directory for Coronary artery disease\n",
    "print(f\"Looking for a relevant cohort directory for {trait}...\")\n",
    "\n",
    "# Check available cohorts\n",
    "available_dirs = os.listdir(tcga_root_dir)\n",
    "print(f\"Available cohorts: {available_dirs}\")\n",
    "\n",
    "# Coronary artery disease-related keywords\n",
    "cad_keywords = ['coronary', 'artery', 'heart', 'cardiac', 'cardiovascular']\n",
    "\n",
    "# Look for coronary artery disease-related directories\n",
    "cad_related_dirs = []\n",
    "for d in available_dirs:\n",
    "    if any(keyword in d.lower() for keyword in cad_keywords):\n",
    "        cad_related_dirs.append(d)\n",
    "\n",
    "print(f\"Coronary artery disease-related cohorts: {cad_related_dirs}\")\n",
    "\n",
    "if not cad_related_dirs:\n",
    "    print(f\"No suitable cohort found for {trait}.\")\n",
    "    # Mark the task as completed by recording the unavailability\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=\"TCGA\",\n",
    "        info_path=json_path,\n",
    "        is_gene_available=False,\n",
    "        is_trait_available=False\n",
    "    )\n",
    "    # Exit the script early since no suitable cohort was found\n",
    "    selected_cohort = None\n",
    "else:\n",
    "    # Select the most relevant cohort if multiple are found\n",
    "    selected_cohort = cad_related_dirs[0]\n",
    "    print(f\"Selected cohort: {selected_cohort}\")\n",
    "    \n",
    "    # Get the full path to the selected cohort directory\n",
    "    cohort_dir = os.path.join(tcga_root_dir, selected_cohort)\n",
    "    \n",
    "    # Get the clinical and genetic data file paths\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    print(f\"Clinical data file: {os.path.basename(clinical_file_path)}\")\n",
    "    print(f\"Genetic data file: {os.path.basename(genetic_file_path)}\")\n",
    "    \n",
    "    # Load the clinical and genetic data\n",
    "    clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\\t')\n",
    "    genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\\t')\n",
    "    \n",
    "    # Print the column names of the clinical data\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Basic info about the datasets\n",
    "    print(f\"\\nClinical data shape: {clinical_df.shape}\")\n",
    "    print(f\"Genetic data shape: {genetic_df.shape}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}