Datasets:
File size: 1,680 Bytes
83b6e9c dc64fd4 3bd553f dc64fd4 5f7b3d0 2e8d97b 3bd553f eed64df 3bd553f 2e8d97b 52eeabc 2e8d97b 3bd553f 8d939f8 ed89297 2e8d97b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: mit
task_categories:
- question-answering
language:
- en
- zh
tags:
- human-behavior
- social-media
size_categories:
- 10K<n<100K
---
<p align="center">
<img center src="https://i.postimg.cc/NjXSwQvY/FineRob.png" width = "150" alt="logo">
</p>
<h2 align="center">FineRob - Fine-Grained Social Media Behavior Simulation Dataset</h2>
## Paper
https://arxiv.org/abs/2412.03148
## Github
https://github.com/linkseed18612254945/FineRob
## Table of Contents
- [Overview](#overview)
- [Dataset Description](#dataset-description)
- [Download](#Download)
- [Introduction](#Introduction)
## Overview
**Finerob** is a novel fine-grained user behavior simulation dataset collected from three social media platform: X(Twitter), Reddit, Zhihu.
The dataset is design to evalute the role-play capacity of LLMs through three differnet action elements simulation.
<p align="center">
<img center src="https://i.postimg.cc/52JHnQGw/RESA-Example-new.png" alt="example">
</p>
## Dataset Description
- **Name**: Finerob
- **Purpose**: Social media user behavior simulation by role-playing LLMs.
- **Form**: multiple-choice QA.
- **Size**: 78.6k fine-grained behavior QA records from 1,866 users.
- **Language**: English, Chinese.
## Introduction
We collect 78.6k fine-grained user behavior prediction QA data from 1866 users on social medias(including Twitter, Reddit and Zhihu)
You can find the detailed user infomation in *platform_user_info.json* through the *user_index*.
*history_index* means the behavior index in user's complete timelines, basicly, you should predict this behavior by the history. The history_index 0 means it is the first behavior of the user. |