File size: 3,778 Bytes
548e58c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d3e87
548e58c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de50151
548e58c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""


import json

import datasets
from datasets.tasks import QuestionAnsweringExtractive


logger = datasets.logging.get_logger(__name__)


#_URL = "https://huggingface.co/datasets/Lexi/NQ_squad_format/blob/main/"
_URLS = {
    "train": "train.json",
    "dev": "dev_incomplete.json",
    "test": "openbook_beam_5.json"
}


class SquadConfig(datasets.BuilderConfig):
    """BuilderConfig for SQUAD."""

    def __init__(self, **kwargs):
        """BuilderConfig for SQUAD.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SquadConfig, self).__init__(**kwargs)


class Squad(datasets.GeneratorBasedBuilder):
    """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""

    BUILDER_CONFIGS = [
        SquadConfig(
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            #description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        print(filepath)
        with open(filepath, 'rb') as f:
            data = json.load(f)
        print("example data: ", data[0])
        print("number of data: ", len(data))
        print("data keys: ", data[0].keys())
        for line in data:
            yield key, {
                "context": line['context'],
                "question": line["question"],
                "id": line["id"],
                "answers": line['answers']
            }
            key += 1