Datasets:
LEAP
/

ArXiv:
License:
ChaosBench / README.md
juannat7's picture
Update README.md
443926a verified
|
raw
history blame
10.5 kB
metadata
license: gpl-3.0
viewer: false

ChaosBench

ChaosBench is a benchmark project to improve long-term forecasting of chaotic systems, in particular subseasonal-to-seasonal (S2S) climate, using ML approaches.

🌐: https://leap-stc.github.io/ChaosBench/

πŸ“š: https://arxiv.org/abs/2402.00712

✨ Features

1️⃣ Diverse Observations. Spanning over 45 years (1979 - 2023), we include ERA5/LRA5/ORAS5 reanalysis for a fully-coupled Earth system emulation (atmosphere-terrestrial-sea-ice)

2️⃣ Diverse Baselines. Wide selection of physics-based forecasts from leading national agencies in Europe, the UK, America, and Asia

3️⃣ Differentiable Physics Metrics. Introduces two differentiable physics-based metrics to minimize the decay of power spectra at long forecasting horizon (blurriness)

4️⃣ Large-Scale Benchmarking. Systematic evaluation (deterministic, probabilistic, physics-based) for state-of-the-art ML-based weather emulators like ViT/ClimaX, PanguWeather, GraphCast, and FourcastNetV2

🏁 Getting Started

Step 0: Clone the ChaosBench Github repository

Step 1: Install package dependencies

$ cd ChaosBench
$ pip install -r requirements.txt

Step 2: Initialize the data space by running

$ cd data/
$ wget https://huggingface.co/datasets/LEAP/ChaosBench/resolve/main/process.sh
$ chmod +x process.sh

Step 3: Download the data

# Required for inputs and climatology (e.g., normalization)
$ ./process.sh era5
$ ./process.sh lra5
$ ./process.sh oras5
$ ./process.sh climatology

# Optional: control (deterministic) forecasts
$ ./process.sh ukmo
$ ./process.sh ncep
$ ./process.sh cma
$ ./process.sh ecmwf

# Optional: perturbed (ensemble) forecasts
$ ./process.sh ukmo_ensemble
$ ./process.sh ncep_ensemble
$ ./process.sh cma_ensemble
$ ./process.sh ecmwf_ensemble

πŸ” Dataset Overview

All data has daily and 1.5-degree resolution.

  1. ERA5 Reanalysis for Surface-Atmosphere (1979-2023). The following table indicates the 48 variables (channels) that are available for Physics-based models. Note that the Input ERA5 observations contains ALL fields, including the unchecked boxes:

    Parameters/Levels (hPa) 1000 925 850 700 500 300 200 100 50 10
    Geopotential height, z ($gpm$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    Specific humidity, q ($kg kg^{-1}$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“      
    Temperature, t ($K$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    U component of wind, u ($ms^{-1}$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    V component of wind, v ($ms^{-1}$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    Vertical velocity, w ($Pas^{-1}$)         βœ“          
  2. LRA5 Reanalysis for Terrestrial (1979-2023)

Acronyms Long Name Units
asn snow albedo (0 - 1)
d2m 2-meter dewpoint temperature K
e total evaporation m of water equivalent
es snow evaporation m of water equivalent
evabs evaporation from bare soil m of water equivalent
evaow evaporation from open water m of water equivalent
evatc evaporation from top of canopy m of water equivalent
evavt evaporation from vegetation transpiration m of water equivalent
fal forecaste albedo (0 - 1)
lai_hv leaf area index, high vegetation $m^2 m^{-2}$
lai_lv leaf area index, low vegetation $m^2 m^{-2}$
pev potential evaporation m
ro runoff m
rsn snow density $kg m^{-3}$
sd snow depth m of water equivalent
sde snow depth water equivalent m
sf snowfall m of water equivalent
skt skin temperature K
slhf surface latent heat flux $J m^{-2}$
smlt snowmelt m of water equivalent
snowc snowcover %
sp surface pressure Pa
src skin reservoir content m of water equivalent
sro surface runoff m
sshf surface sensible heat flux $J m^{-2}$
ssr net solar radiation $J m^{-2}$
ssrd download solar radiation $J m^{-2}$
ssro sub-surface runoff m
stl1 soil temperature level 1 K
stl2 soil temperature level 2 K
stl3 soil temperature level 3 K
stl4 soil temperature level 4 K
str net thermal radiation $J m^{-2}$
strd downward thermal radiation $J m^{-2}$
swvl1 volumetric soil water layer 1 $m^3 m^{-3}$
swvl2 volumetric soil water layer 2 $m^3 m^{-3}$
swvl3 volumetric soil water layer 3 $m^3 m^{-3}$
swvl4 volumetric soil water layer 4 $m^3 m^{-3}$
t2m 2-meter temperature K
tp total precipitation m
tsn temperature of snow layer K
u10 10-meter u-wind $ms^{-1}$
v10 10-meter v-wind $ms^{-1}$
  1. ORAS Reanalysis for Sea-Ice (1979-2023)
Acronyms Long Name Units
iicethic sea ice thickness m
iicevelu sea ice zonal velocity $ms^{-1}$
iicevelv sea ice meridional velocity $ms^{-1}$
ileadfra sea ice concentration (0-1)
so14chgt depth of 14$^\circ$ isotherm m
so17chgt depth of 17$^\circ$ isotherm m
so20chgt depth of 20$^\circ$ isotherm m
so26chgt depth of 26$^\circ$ isotherm m
so28chgt depth of 28$^\circ$ isotherm m
sohefldo net downward heat flux $W m^{-2}$
sohtc300 heat content at upper 300m $J m^{-2}$
sohtc700 heat content at upper 700m $J m^{-2}$
sohtcbtm heat content for total water column $J m^{-2}$
sometauy meridonial wind stress $N m^{-2}$
somxl010 mixed layer depth 0.01 m
somxl030 mixed layer depth 0.03 m
sosaline salinity Practical Salinity Units (PSU)
sossheig sea surface height m
sosstsst sea surface temperature $^\circ C$
sowaflup net upward water flux $kg/m^2/s$
sozotaux zonal wind stress $N m^{-2}$
  • Baselines:
    • Physics-based models (including control/perturbed forecasts):
      • UKMO: UK Meteorological Office
      • NCEP: National Centers for Environmental Prediction
      • CMA: China Meteorological Administration
      • ECMWF: European Centre for Medium-Range Weather Forecasts
    • Data-driven models:
      • Lagged-Autoencoder
      • Fourier Neural Operator (FNO)
      • ResNet
      • UNet
      • ViT/ClimaX
      • PanguWeather
      • GraphCast
      • Fourcastnetv2

πŸ… Evaluation Metrics

We divide our metrics into 3 classes: (1) Deterministic-based, which cover evaluation used in conventional deterministic forecasting tasks, (2) Physics-based, which are aimed to construct a more physically-faithful and explainable data-driven forecast, and (3) Probabilistic-based, which account for the skillfulness of ensemble forecasts.

  1. Deterministic-based:

    • RMSE
    • Bias
    • Anomaly Correlation Coefficient (ACC)
    • Multiscale Structural Similarity Index (MS-SSIM)
  2. Physics-based:

    • Spectral Divergence (SpecDiv)
    • Spectral Residual (SpecRes)
  3. Probabilistic-based:

    • RMSE Ensemble
    • Bias Ensemble
    • ACC Ensemble
    • MS-SSIM Ensemble
    • SpecDiv Ensemble
    • SpecRes Ensemble
    • Continuous Ranked Probability Score (CRPS)
    • Continuous Ranked Probability Skill Score (CRPSS)
    • Spread
    • Spread/Skill Ratio

πŸͺœ Leaderboard

You can access the full score and checkpoints in logs/<MODEL_NAME> within the following subdirectory:

  • Scores: eval/<METRIC>.csv
  • Model checkpoints: lightning_logs/