File size: 1,923 Bytes
b3f451d 319ff67 b3f451d 319ff67 b3f451d 319ff67 b3f451d 319ff67 b3f451d 9a4b74f b3f451d 319ff67 b3f451d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# /// script
# dependencies = ["trl>=0.20.0", "peft>=0.13.0", "datasets", "transformers>=4.45.0", "accelerate", "bitsandbytes", "huggingface_hub"]
# ///
import os
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer, SFTConfig
# Authenticate
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("Authenticated with HuggingFace")
print("Loading dataset...")
dataset = load_dataset("KevinKeller/cognitive-pattern-selector-v1")
train_dataset = dataset["train"]
eval_dataset = dataset.get("validation")
print(f"Train samples: {len(train_dataset)}")
if eval_dataset:
print(f"Eval samples: {len(eval_dataset)}")
# Model - using Qwen2.5-7B for pattern selection
model_id = "Qwen/Qwen2.5-7B-Instruct"
print(f"Using model: {model_id}")
# LoRA config
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
bias="none",
task_type="CAUSAL_LM",
)
# Training config - modern TRL API
training_args = SFTConfig(
output_dir="./pattern-selector-output",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-4,
logging_steps=10,
save_strategy="epoch",
eval_strategy="epoch" if eval_dataset else "no",
bf16=True,
push_to_hub=True,
hub_model_id="KevinKeller/cognitive-pattern-selector-qwen2.5-7b",
report_to="none",
max_length=4096, # Use max_length, not max_seq_length
)
print("Starting training...")
trainer = SFTTrainer(
model=model_id, # Pass model name, not loaded model
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=peft_config,
args=training_args,
)
trainer.train()
print("Training complete! Pushing to Hub...")
trainer.push_to_hub()
print("Done!")
|