File size: 27,741 Bytes
c75d108
 
1a9a056
c75d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9a056
 
 
c75d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9a056
 
 
 
 
 
 
c75d108
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9a056
c75d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9a056
 
 
 
 
c75d108
 
 
 
1a9a056
c75d108
 
 
1a9a056
 
 
c75d108
1a9a056
 
 
 
 
 
 
 
 
 
 
 
 
 
c75d108
1a9a056
c75d108
 
 
 
1a9a056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75d108
1a9a056
 
 
 
 
 
 
c75d108
1a9a056
 
 
 
c75d108
1a9a056
 
 
 
c75d108
 
 
 
 
 
 
 
1a9a056
 
 
 
c75d108
 
 
 
 
 
 
 
1a9a056
 
c75d108
1a9a056
 
 
 
 
c75d108
 
 
1a9a056
c75d108
1a9a056
 
c75d108
 
 
 
 
 
1a9a056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75d108
 
 
1a9a056
c75d108
1a9a056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
# Copyright 2022, 2023 Jim O'Regan for Språkbanken Tal
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Datasets loader for Waxholm speech corpus"""

from io import BytesIO
import os
import soundfile as sf
from collections import namedtuple
from copy import deepcopy
from difflib import SequenceMatcher

import datasets
from datasets.features import Audio

TRAIN_LIST = "alloktrainfiles"
TEST_LIST = "testfiles"


_DESCRIPTION = """\
The Waxholm corpus was collected in 1993 - 1994 at the department of Speech, Hearing and Music (TMH), KTH.
"""


_CITATION = """
@article{bertenstam1995spoken,
  title={Spoken dialogue data collected in the {W}axholm project},
  author={Bertenstam, Johan and Blomberg, Mats and Carlson, Rolf and Elenius, Kjell and Granstr{\"o}m, Bj{\"o}rn and Gustafson, Joakim and Hunnicutt, Sheri and H{\"o}gberg, Jesper and Lindell, Roger and Neovius, Lennart and Nord, Lennart and de~Serpa-Leitao, Antonio and Str{\"o}m, Nikko},
  journal={STH-QPSR, KTH},
  volume={1},
  pages={49--74},
  year={1995}
}
@inproceedings{bertenstam1995waxholm,
  title={The {W}axholm application database.},
  author={Bertenstam, J and Blomberg, Mats and Carlson, Rolf and Elenius, Kjell and Granstr{\"o}m, Bj{\"o}rn and Gustafson, Joakim and Hunnicutt, Sheri and H{\"o}gberg, Jesper and Lindell, Roger and Neovius, Lennart and Nord, Lennart and de~Serpa-Leitao, Antonio and Str{\"o}m, Nikko},
  booktitle={EUROSPEECH},
  year={1995}
}"""


_URL = "http://www.speech.kth.se/waxholm/waxholm2.html"


class FRExpected(Exception):
    """Exception to raise when FR line was expected, but not read"""
    def __init__(self, line):
        msg = "Unknown line type (does not begin with 'FR'): "
        super().__init__(msg + line)


class WaxholmDataset(datasets.GeneratorBasedBuilder):
    """Dataset script for Waxholm."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="waxholm"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "phonemes": datasets.Sequence(datasets.Value("string")),
                "audio": datasets.Audio(sampling_rate=16_000)
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                    "files": TRAIN_LIST
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                    "files": TEST_LIST
                },
            ),
        ]

    def _generate_examples(self, split, files):
        with open(f"./waxholm/{files}") as input_file:
            for line in input_file.readlines():
                line = line.strip()
                parts = line.split(".")
                subdir = parts[0]
                audio_file = f"./waxholm/scenes_formatted/{subdir}/{line}"
                if not os.path.exists(audio_file):
                    print(f"{audio_file} does not exist: skipping")
                    continue
                text_file = f"{audio_file}.mix"
                if not os.path.exists(text_file):
                    print(f"{text_file} does not exist: skipping")
                    continue
                mix = Mix(text_file)
                samples, sr = smp_read_sf(audio_file)
                buffer = BytesIO()
                sf.write(buffer, samples, sr, format="wav")
                blank = Audio()
                yield line, {
                    "id": line,
                    "text": mix.text,
                    "phonemes": mix.get_phoneme_list(),
                    "audio": {
                        "bytes": buffer.getvalue(),
                        "sampling_rate": sr,
                    }
                }


def fix_text(text: str) -> str:
    replacements = text.maketrans("{}|\\[]", "äåöÖÄÅ")
    return text.translate(replacements)


Label = namedtuple('Label', ['start', 'end', 'label'])


class FR:
    def __init__(self, text="", **kwargs):  # C901
        if text and text != "":
            self.from_text(text)
        else:
            for arg in kwargs:
                prms = ["pm", "pm_type", "type", "frame",
                        "seconds", "phone", "phone_type",
                        "word", "pseudoword"]
                if arg in prms:
                    self.__dict__[arg] = kwargs[arg]
                else:
                    print(f"Unrecognised argument: {arg}")

    def from_text(self, text: str):
        if not text.startswith("FR"):
            raise FRExpected(text)
        parts = [a.strip() for a in text.split("\t")]
        self.frame = parts[0][2:].strip()
        if parts[-1].strip().endswith(" sec"):
            self.seconds = parts[-1].strip()[0:-4]
        def split_phone(phone):
            if phone.startswith("$#"):
                phtype = 'I'
                phone_type = fix_text(phone[0:2])
                phone_out = fix_text(phone[2:])
            elif phone.startswith("$") or phone.startswith("#"):
                phtype = 'I'
                phone_type = fix_text(phone[0:1])
                phone_out = fix_text(phone[1:])
            else:
                print(phone)
                return None
            return {
                "type": phtype,
                "phone_type": phone_type,
                "phone": phone_out
            }
        for subpart in parts[1:-1]:
            subpart = subpart.strip()
            if subpart.startswith("$#") or subpart.startswith("$") or subpart.startswith("#"):
                phparts = split_phone(subpart)
                if phparts is not None:
                    self.type = phparts['type']
                    self.phone_type = phparts['phone_type']
                    self.phone = phparts['phone']
            elif subpart.startswith(">pm "):
                phparts = split_phone(subpart[4:])
                if phparts is not None:
                    self.pm_type = phparts['phone_type']
                    self.pm = phparts['phone']
            elif subpart.startswith(">pm. "):
                phparts = split_phone(subpart[5:])
                if phparts is not None:
                    self.pm_type = phparts['phone_type']
                    self.pm = phparts['phone']
            elif subpart.startswith(">w "):
                self.type = 'B'
                self.word = fix_text(subpart[3:])
                self.pseudoword = False
            elif subpart.startswith(">w. "):
                self.type = 'B'
                self.word = fix_text(subpart[4:])
                self.pseudoword = False
            elif subpart == "> XklickX" or subpart == "> XutandX":
                self.type = 'B'
                self.word = subpart[2:]
                self.pseudoword = True
            elif subpart.startswith("X"):
                if hasattr(self, 'type'):
                    print(self.type, self.type == 'B')
                self.type = getattr(self, 'type', 'B')
                self.word = fix_text(subpart)
                self.pseudoword = True
            elif subpart == "OK":
                self.type = 'E'
            elif subpart == "PROBLEMS":
                self.type = 'E'

    def get_type(self):
        if "type" in self.__dict__:
            return self.type
        else:
            return ""

    def __repr__(self):
        parts = []
        parts.append(f"type: {self.get_type()}")
        parts.append(f"frame: {self.frame}")
        if self.get_type() != 'E':
            parts.append(f"phone: {self.get_phone()}")
        if 'word' in self.__dict__:
            parts.append(f"word: {self.word}")
        if 'pm_type' in self.__dict__:
            parts.append(f"pm_type: {self.pm_type}")
        if 'pm' in self.__dict__:
            parts.append(f"pm: {self.pm}")
        if 'seconds' in self.__dict__:
            parts.append(f"sec: {self.seconds}")
        return "FR(" + ", ".join(parts) + ")"

    def fix_type(self):
        if self.is_type("B") and self.get_word() == "":
            self.pm_type = "$"
            self.phone_type = "$"
            self.type = "I"

    def get_phone(self, fix_accents=True):
        def fix_accents(phone, fix_accents=True):
            if not fix_accents:
                return phone
            return phone.replace("'", "ˈ").replace('"', "ˌ")
        if 'pm' in self.__dict__:
            return fix_accents(self.pm, fix_accents)
        elif 'phone' in self.__dict__:
            return fix_accents(self.phone, fix_accents)
        else:
            return None

    def is_silence_word(self, noise=False):
        if 'word' in self.__dict__:
            if not noise:
                return self.word == "XX"
            else:
                return self.word.startswith("X") and self.word.endswith("X")
        else:
            return False
    
    def is_type(self, type):
        if "type" in self.__dict__:
            return type == self.type
        else:
            return False

    def has_seconds(self):
        return "seconds" in self.__dict__

    def get_seconds(self):
        if not self.has_seconds() and "frame" in self.__dict__:
            return int(self.frame) / 16000.0
        else:
            return self.seconds

    def get_word(self):
        if self.has_word():
            return self.word
        else:
            return ""

    def has_word(self):
        return "word" in self.__dict__

    def has_pseudoword(self):
        return "pseudoword" in self.__dict__


def merge_frs(fr1, fr2, check_time=False):
    """
    Merge FRS entries for plosives: by default, the
    period of glottal closure and the burst are separately
    annotated.
    """
    if fr2.has_word():
        return None
    if check_time:
        if fr1.get_seconds() != fr2.get_seconds():
            return None
    if _is_glottal_closure(fr1.get_phone(), fr2.get_phone()):
        if not fr1.has_word():
            return fr2
        else:
            word = None
            if fr1.has_word():
                word = fr1.word
            pword = None
            if fr1.has_pseudoword():
                pword = fr1.pseudoword
            return FR(pm=fr2.pm, pm_type=fr2.pm_type, type=fr2.type,
                      frame=fr2.frame, seconds=fr2.seconds, phone=fr2.phone,
                      phone_type=fr2.phone_type, word=word, pseudoword=pword)


SILS = {
    "K": "k",
    "G": "g",
    "T": "t",
    "D": "d",
    "2T": "2t",
    "2D": "2d",
    "P": "p",
    "B": "b"
}
def _is_glottal_closure(cur, next):
    return cur in SILS and next == SILS[cur]


def _replace_glottal_closures(input):
    input += ' '
    for sil in SILS:
        input = input.replace(f"{sil} {SILS[sil]} ", f"{SILS[sil]} ")
    return input[:-1]

def _fix_duration_markers(input):
    input += ' '
    input = input.replace(":+ ", ": ")
    return input[:-1]


class Mix():
    def __init__(self, filepath: str, stringfile=None, fix_type=True):
        self.fr = []
        self.path = filepath
        if stringfile is None:
            with open(filepath) as inpf:
                self.read_data(inpf.readlines())
        else:
            self.read_data(stringfile.split("\n"))
        if fix_type:
            for fr in self.fr:
                fr.fix_type()

    def read_data(self, inpf):  # C901
        """read data from text of a .mix file"""
        saw_text = False
        saw_phoneme = False
        saw_labels = False
        for line in inpf:
            if line.startswith("Waxholm dialog."):
                self.filepath = line[15:].strip()
            if line.startswith("TEXT:"):
                saw_text = True
                continue
            if saw_text:
                self.text = fix_text(line.strip())
                saw_text = False
            if line.startswith("PHONEME:"):
                saw_phoneme = True
                self.phoneme = fix_text(line[8:].strip())
                if line[8:].strip().endswith("."):
                    saw_phoneme = False
                continue
            if saw_phoneme:
                self.phoneme = fix_text(line.strip())
                if line[8:].strip().endswith("."):
                    saw_phoneme = False
            if line.startswith("FR "):
                if saw_labels:
                    saw_labels = False
                self.fr.append(FR(text=line))
            if line.startswith("Labels: "):
                self.labels = line[8:].strip()
                saw_labels = True
            if saw_labels and line.startswith(" "):
                self.labels += line.strip()

    def check_fr(self, verbose=False) -> bool:
        """
        Simple sanity check: that there were FR lines,
        and that the first was a start type, and
        last was an end type.
        """
        if 'fr' not in self.__dict__:
            return False
        if len(self.fr) == 0:
            return False
        start_end = self.fr[0].is_type("B") and self.fr[-1].is_type("E")
        if verbose and not start_end:
            if not self.fr[0].is_type("B"):
                print(f"{self.path}: missing start type")
            if not self.fr[-1].is_type("E"):
                print(f"{self.path}: missing end type")
        return start_end

    def get_times(self, as_frames=False):
        """
        get the times of each phoneme
        """
        if not self.check_fr(verbose=True):
            return []
        if as_frames:
            times = [int(x.frame) for x in self.fr]
        else:
            times = [float(x.seconds) for x in self.fr]
        return times

    def get_time_pairs(self, as_frames=False):
        """
        get a list of tuples containing start and end times
        By default, the times are in seconds; if `as_frames`
        is set, the number of frames are returned instead.
        """
        times = self.get_times(as_frames=as_frames)
        starts = times[0:-1]
        ends = times[1:]
        return [x for x in zip(starts, ends)]

    def prune_empty_presilences(self, verbose=False, include_noises=False):
        """
        Remove empty silence markers (i.e., those with no distinct duration)
        """
        self.orig_fr = deepcopy(self.fr)
        i = 0
        warned = False
        def check_cur(cur, next):
            if verbose and not cur.has_seconds():
                print(f"Missing seconds: {self.path}\nLine: {cur}")
            if verbose and not next.has_seconds():
                print(f"Missing seconds: {self.path}\nLine: {next}")
            return cur.get_seconds() == next.get_seconds() and cur.is_silence_word()
        todel = []
        while i < len(self.fr) - 1:
            if check_cur(self.fr[i], self.fr[i + 1]):
                if verbose:
                    if not warned:
                        warned = True
                        print(f"Empty silence in {self.path}:")
                    print(self.fr[i])
                todel.append(i)
            i += 1
        if todel is not None and todel != []:
            for chaff in todel.reverse():
                del(self.fr[chaff])

    def prune_empty_postsilences(self, verbose=False, include_noises=False):
        """
        Remove empty silence markers (i.e., those with no distinct duration)
        """
        if not "orig_fr" in self.__dict__:
            self.orig_fr = deepcopy(self.fr)
        i = 1
        warned = False
        def check_cur(cur, prev):
            if verbose and not cur.has_seconds():
                print(f"Missing seconds: {self.path}\nLine: {cur}")
            if verbose and not prev.has_seconds():
                print(f"Missing seconds: {self.path}\nLine: {prev}")
            return cur.get_seconds() == prev.get_seconds() and cur.is_silence_word()
        todel = []
        while i < len(self.fr):
            if check_cur(self.fr[i], self.fr[i - 1]):
                if verbose:
                    if not warned:
                        warned = True
                        print(f"Empty silence in {self.path}:")
                    print(self.fr[i])
                todel.append(i)
            i += 1
        if todel is not None and todel != []:
            for chaff in todel.reverse():
                del(self.fr[chaff])

    def prune_empty_segments(self, verbose=False):
        """
        Remove empty segments (i.e., those with no distinct duration)
        """
        if not "orig_fr" in self.__dict__:
            self.orig_fr = deepcopy(self.fr)
        times = self.get_time_pairs(as_frames=True)
        if len(times) != (len(self.fr) - 1):
            print("Uh oh: time pairs and items don't match")
        else:
            keep = []
            for fr in zip(self.fr[:-1], times):
                cur_time = fr[1]
                if cur_time[0] == cur_time[1]:
                    if verbose:
                        print(f"Empty segment {fr[0].get_phone()} ({cur_time[0]} --> {cur_time[1]})")
                else:
                    keep.append(fr[0])
            keep.append(self.fr[-1])
            self.fr = keep

    def prune_empty_silences(self, verbose = False):
        self.prune_empty_presilences(verbose)
        self.prune_empty_postsilences(verbose)

    def merge_plosives(self, verbose=False):
        """
        Merge plosives in FRs
        (in Waxholm, as in TIMIT, the silence before the burst and the burst
        are annotated separately).
        """
        if not "orig_fr" in self.__dict__:
            self.orig_fr = deepcopy(self.fr)
        tmp = []
        i = 0
        while i < len(self.fr)-1:
            merged = merge_frs(self.fr[i], self.fr[i+1])
            if merged is not None:
                if verbose:
                    print(f"Merging {self.fr[i]} and {self.fr[i+1]}")
                i += 1
                tmp.append(merged)
            else:
                tmp.append(self.fr[i])
            i += 1
        tmp.append(self.fr[-1])
        self.fr = tmp

    def get_phone_label_tuples(self, as_frames=False, fix_accents=True):
        times = self.get_time_pairs(as_frames=as_frames)
        if self.check_fr():
            labels = [fr.get_phone(fix_accents) for fr in self.fr[0:-1]]
        else:
            labels = []
        if len(times) == len(labels):
            out = []
            for z in zip(times, labels):
                out.append((z[0][0], z[0][1], z[1]))
            return out
        else:
            return []

    def get_merged_plosives(self, noop=False, prune_empty=True):
        """
        Returns a list of phones with plosives merged
        (in Waxholm, as in TIMIT, the silence before the burst and the burst
        are annotated separately).
        If `noop` is True, it simply returns the output of `prune_empty_labels()`
        """
        if noop:
            if not prune_empty:
                print("Warning: not valid to set noop to True and prune_empty to false")
                print("Ignoring prune_empty")
            return self.prune_empty_labels()
        i = 0
        out = []
        if prune_empty:
            labels = self.prune_empty_labels()
        else:
            labels = self.get_phone_label_tuples()
        while i < len(labels)-1:
            cur = labels[i]
            next = labels[i+1]
            if _is_glottal_closure(cur[2], next[2]):
                tmp = Label(start = cur[0], end = next[1], label = next[2])
                out.append(tmp)
                i += 2
            else:
                tmp = Label(start = cur[0], end = cur[1], label = cur[2])
                out.append(tmp)
                i += 1
        return out

    def get_word_label_tuples(self, verbose=True):
        times = self.get_time_pairs()
        if len(times) == len(self.fr[0:-1]):
            out = []
            labels_raw = [x for x in zip(times, self.fr[0:-1])]
            i = 0
            cur = None
            while i < len(labels_raw) - 1:
                if labels_raw[i][1].is_type("B"):
                    if cur is not None:
                        out.append(cur)
                    if labels_raw[i+1][1].is_type("B"):
                        if verbose and labels_raw[i][1].get_word() == "":
                            print("Expected word", labels_raw[i][1])
                        out.append((labels_raw[i][0][0], labels_raw[i][0][1], labels_raw[i][1].get_word()))
                        cur = None
                        i += 1
                        continue
                    else:
                        if verbose and labels_raw[i][1].get_word() == "":
                            print("Expected word", labels_raw[i][1])
                        cur = (labels_raw[i][0][0], labels_raw[i][0][1], labels_raw[i][1].get_word())
                if labels_raw[i+1][1].is_type("B"):
                    if cur is not None:
                        cur = (cur[0], labels_raw[i][0][1], cur[2])
                i += 1
            out.append(cur)
            return out
        else:
            return []

    def get_dictionary(self, fix_accents=True):
        """
        Get pronunciation dictionary entries from the .mix file.
        These entries are based on the corrected pronunciations; for
        the lexical pronunciations, use the `phoneme` property.
        """
        output = {}
        current_phones = []
        prev_word = ''

        for fr in self.fr:
            if 'word' in fr.__dict__:
                phone = fr.get_phone(fix_accents)
                if prev_word != "":
                    if prev_word not in output:
                        output[prev_word] = []
                    output[prev_word].append(current_phones.copy())
                    current_phones.clear()
                prev_word = fr.word
                current_phones.append(phone)
            elif fr.is_type("I"):
                phone = fr.get_phone(fix_accents)
                current_phones.append(phone)
            else:
                if prev_word not in output:
                    output[prev_word] = []
                output[prev_word].append(current_phones.copy())
                return output

    def get_dictionary_list(self, fix_accents=True):
        """
        Get pronunciation dictionary entries from the .mix file.
        These entries are based on the corrected pronunciations; for
        the lexical pronunciations, use the `phoneme` property.
        This version creates a list of tuples (word, phones) that
        preserves the order of the entries.
        """
        output = []
        current_phones = []
        prev_word = ''

        for fr in self.fr:
            if 'word' in fr.__dict__:
                phone = fr.get_phone(fix_accents)
                if prev_word != "":
                    output.append((prev_word, " ".join(current_phones)))
                    current_phones.clear()
                prev_word = fr.word
                current_phones.append(phone)
            elif fr.is_type("I"):
                phone = fr.get_phone(fix_accents)
                current_phones.append(phone)
            else:
                output.append((prev_word, " ".join(current_phones)))
                return output

    def get_phoneme_string(self, insert_pauses=True, fix_accents=True):
        """
        Get an opinionated phoneme string

        Args:
            insert_pauses (bool, optional): Insert pauses between words. Defaults to True.
            fix_accents (bool, optional): IPA-ify accents. Defaults to True.
        """
        dict_list = self.get_dictionary_list(fix_accents)
        skip = ['p:', '.']
        if insert_pauses:
            phone_strings = [x[1] for x in dict_list if x[1] not in skip]
            joined = ' p: '.join(phone_strings)
        else:
            phone_strings = [x[1] for x in dict_list if x[1] != "."]
            joined = ' '.join(phone_strings)
        joined = _replace_glottal_closures(joined)
        joined = _fix_duration_markers(joined)
        return joined

    def get_phoneme_list(self, insert_pauses=True, fix_accents=True):
        return self.get_phoneme_string(insert_pauses, fix_accents).split(' ')

    def get_compare_dictionary(self, fix_accents=True, merge_plosives=True, only_changed=True):
        """
        Get pronunciation dictionary for comparision: i.e., where there is a difference
        between the canonical pronunciation and what was spoken
        """
        if merge_plosives:
            self.merge_plosives()
        orig = self.get_dictionary_list(fix_accents)
        self.prune_empty_segments()
        new = self.get_dictionary_list(fix_accents)
        if len(orig) != len(new):
            words_orig = [w[0] for w in orig]
            words_new = [w[0] for w in new]
            skippables = []
            for tag, i, j, _, _ in SequenceMatcher(None, words_orig, words_new).get_opcodes():
                if tag in ('delete', 'replace'):
                    skippables += [a for a in range(i, j)]
            for c in skippables.reverse():
                del(orig[c])
        out = []
        i = 0
        while i < len(orig):
            if orig[i][0] == new[i][0]:
                if orig[i][1] == new[i][1]:
                    if not only_changed:
                        out.append(orig)
                else:
                    out.append((orig[i][0], orig[i][1], new[i][1]))
            i += 1
        return out


def smp_probe(filename: str) -> bool:
    with open(filename, "rb") as f:
        return f.read(9) == b"file=samp"


def smp_headers(filename: str):
    with open(filename, "rb") as f:
        f.seek(0)
        raw_headers = f.read(1024)
        raw_headers = raw_headers.rstrip(b'\x00')
        asc_headers = raw_headers.decode("ascii")
        asc_headers.rstrip('\x00')
        tmp = [a for a in asc_headers.split("\r\n")]
        back = -1
        while abs(back) > len(tmp) + 1:
            if tmp[back] == '=':
                break
            back -= 1
        tmp = tmp[0:back-1]
        return dict(a.split("=") for a in tmp)


def smp_read_sf(filename: str):
    headers = smp_headers(filename)
    if headers["msb"] == "last":
        ENDIAN = "LITTLE"
    else:
        ENDIAN = "BIG"

    data, sr = sf.read(filename, channels=int(headers["nchans"]),
                       samplerate=16000, endian=ENDIAN, start=512,
                       dtype="int16", format="RAW", subtype="PCM_16")
    return (data, sr)


def _write_wav(filename, arr):
    import wave

    with wave.open(filename, "w") as f:
        f.setnchannels(1)
        f.setsampwidth(2)
        f.setframerate(16000)
        f.writeframes(arr)


#arr, sr = smp_read_sf("/Users/joregan/Playing/waxholm/scenes_formatted//fp2060/fp2060.pr.09.smp")
#write_wav("out.wav", arr)