File size: 4,904 Bytes
6e9a192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe25927
0216b0c
 
 
bcef7dc
ef43c79
6e9a192
 
 
 
0216b0c
ef43c79
 
 
6e9a192
 
0216b0c
 
6e9a192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cb6d7
6e9a192
7b47d17
6e9a192
 
 
 
b5cb6d7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# -*- coding: utf-8 -*-
"""yelp_dataset.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/14UtK4YCjMSx4cVbUb9NBRHviWZg07dtY
"""

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
from typing import List
import datasets
import logging

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://www.yelp.com/dataset/download"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://yelpdata.s3.us-west-2.amazonaws.com/"
_URLS = {
    "train": _URL + "yelp_train.csv",
    "test": _URL + "yelp_test.csv",
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class YelpDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    _URLS = _URLS
    VERSION = datasets.Version("1.1.0")

    def _info(self):
      return datasets.DatasetInfo(
          description=_DESCRIPTION,
          features=datasets.Features(
              {
                  "business_id": datasets.Value("string"),
                  "name": datasets.Value("string"),
                  "address": datasets.Value("string"),
                  "city": datasets.Value("string"),
                  "state": datasets.Value("string"),
                  "postal_code": datasets.Value("string"),
                  "latitude": datasets.Value("float"),
                  "longitude": datasets.Value("float"),
                  "stars_x": datasets.Value("float"),
                  "review_count": datasets.Value("float"),
                  "is_open": datasets.Value("float"),
                  "categories": datasets.Value("string"),
                  "hours": datasets.Value("string"),
                  "review_id": datasets.Value("string"),
                  "user_id": datasets.Value("string"),
                  "stars_y": datasets.Value("float"),
                  "useful": datasets.Value("float"),
                  "funny": datasets.Value("float"),
                  "cool": datasets.Value("float"),
                  "text": datasets.Value("string"),
                  "date": datasets.Value("string"),
                  "attributes": datasets.Value("string"),
              }),
          # No default supervised_keys (as we have to pass both question
          # and context as input).
          supervised_keys=None,
          homepage="https://www.yelp.com/dataset/download",
          citation=_CITATION,
      )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
      urls_to_download = self._URLS
      downloaded_files = dl_manager.download_and_extract(urls_to_download)

      return [
          datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
          datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
      ]


    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logging.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as csv_file:
            reader = csv.DictReader(csv_file)
            for i, row in enumerate(reader):
                # Convert the row to a dictionary, removing any null values
                example = {key: value for key, value in row.items() if value is not None}
                yield i, example