Datasets:
File size: 6,821 Bytes
e9e3ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
import datasets
import logging
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://www.yelp.com/dataset/download"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
import json
import datasets
from random import random
class YelpDataset(datasets.GeneratorBasedBuilder):
"""Yelp Dataset focusing on restaurant reviews and business information."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="restaurants", version=VERSION, description="This part of the dataset covers a wide range of restaurants"),
]
DEFAULT_CONFIG_NAME = "restaurants"
_URL = "https://yelpdata.s3.us-west-2.amazonaws.com/"
_URLS = {
"business": _URL + "yelp_academic_dataset_business.json",
"review": _URL + "yelp_academic_dataset_review.json",
}
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"business_id": datasets.Value("string"),
"name": datasets.Value("string"),
"address": datasets.Value("string"),
"city": datasets.Value("string"),
"state": datasets.Value("string"),
"postal_code": datasets.Value("string"),
"latitude": datasets.Value("float"),
"longitude": datasets.Value("float"),
"stars_x": datasets.Value("float"),
"review_count": datasets.Value("float"),
"is_open": datasets.Value("float"),
"categories": datasets.Value("string"),
"hours": datasets.Value("string"),
"review_id": datasets.Value("string"),
"user_id": datasets.Value("string"),
"stars_y": datasets.Value("float"),
"useful": datasets.Value("float"),
"funny": datasets.Value("float"),
"cool": datasets.Value("float"),
"text": datasets.Value("string"),
"date": datasets.Value("string"),
"attributes": datasets.Value("string"),
}),
supervised_keys=None,
homepage="https://www.yelp.com/dataset/download",
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract(self._URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": downloaded_files, "split": "train"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"files": downloaded_files, "split": "test"}),
]
def _generate_examples(self, files, split):
"""Yields examples as (key, example) tuples."""
business_path, review_path = files["business"], files["review"]
# Load businesses and filter for restaurants
with open(business_path, encoding="utf-8") as f:
businesses = {}
for line in f:
business = json.loads(line)
# Check if 'categories' is not None and contains "Restaurants"
if business.get("categories") and "Restaurants" in business["categories"]:
businesses[business['business_id']] = business
# Generate examples with an attempted 80/20 split for train/test
with open(review_path, encoding="utf-8") as f:
for line in f:
review = json.loads(line)
business_id = review['business_id']
if business_id in businesses:
business = businesses[business_id]
example = {
"business_id": business['business_id'],
"name": business.get("name", ""),
"address": business.get("address", ""),
"city": business.get("city", ""),
"state": business.get("state", ""),
"postal_code": business.get("postal_code", ""),
"latitude": business.get("latitude", None),
"longitude": business.get("longitude", None),
"stars_x": business.get("stars", None),
"review_count": business.get("review_count", None),
"is_open": business.get("is_open", None),
"categories": business.get("categories", ""),
"hours": json.dumps(business.get("hours", {})), # Storing hours as a JSON string
"review_id": review.get("review_id", ""),
"user_id": review.get("user_id", ""),
"stars_y": review.get("stars", None),
"useful": review.get("useful", None),
"funny": review.get("funny", None),
"cool": review.get("cool", None),
"text": review.get("text", ""),
"date": review.get("date", ""),
"attributes": json.dumps(business.get("attributes", {})), # Storing attributes as a JSON string
}
# Randomly assign to split based on an 80/20 ratio
if (split == 'train' and random() < 0.8) or (split == 'test' and random() >= 0.8):
yield review['review_id'], example
|