File size: 10,962 Bytes
6e9a192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f84bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9a192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# -*- coding: utf-8 -*-
"""yelp_dataset.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/14UtK4YCjMSx4cVbUb9NBRHviWZg07dtY
"""

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
from typing import List
import datasets
import logging

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://www.yelp.com/dataset/download"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://yelpdata.s3.us-west-2.amazonaws.com/"
_URLS = {
    "train": _URL + "yelp_train.csv",
    "test": _URL + "yelp_test.csv",
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class YelpDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    _URLS = _URLS
    VERSION = datasets.Version("1.1.0")

    def _info(self):
      return datasets.DatasetInfo(
          description=_DESCRIPTION,
          features=datasets.Features(
              {
                  "business_id": datasets.Value("string"),
                  "name": datasets.Value("string"),
                  "address": datasets.Value("string"),
                  "city": datasets.Value("string"),
                  "state": datasets.Value("string"),
                  "postal_code": datasets.Value("string"),
                  "latitude": datasets.Value("float64"),
                  "longitude": datasets.Value("float64"),
                  "stars_x": datasets.Value("float64"),
                  "review_count": datasets.Value("int64"),
                  "is_open": datasets.Value("int64"),
                  "categories": datasets.Value("string"),
                  "hours": datasets.Value("string"),
                  "review_id": datasets.Value("string"),
                  "user_id": datasets.Value("string"),
                  "stars_y": datasets.Value("float64"),
                  "useful": datasets.Value("int64"),
                  "funny": datasets.Value("int64"),
                  "cool": datasets.Value("int64"),
                  "text": datasets.Value("string"),
                  "date": datasets.Value("string"),
                  "attributes": datasets.features.Sequence(
                      { "RestaurantsDelivery":datasets.Value("boolean"),
                        "OutdoorSeating":datasets.Value("boolean"),
                        "BusinessAcceptsCreditCards":datasets.Value("boolean"),
                        "BusinessParking": datasets.features.Sequence(
                            {'garage':datasets.Value("boolean"),
                             'street':datasets.Value("boolean"),
                             'validated':datasets.Value("boolean"),
                             'lot':datasets.Value("boolean"),
                             'valet':datasets.Value("boolean")}),
                        "BikeParking":datasets.Value("boolean"),
                        "RestaurantsPriceRange2":datasets.Value("int64"),
                        "RestaurantsTakeOut":datasets.Value("boolean"),
                        "ByAppointmentOnly":datasets.Value("boolean"),
                        "WiFi":datasets.Value("string"),
                        "Alcohol":datasets.Value("string"),
                        "Caters":datasets.Value("boolean"),
                        'Corkage':datasets.Value("boolean"),
                        'WheelchairAccessible':datasets.Value("boolean"),
                        'HasTV':datasets.Value("boolean"),
                        'Open24Hours':datasets.Value("boolean"),
                        'BikeParking':datasets.Value("boolean"),
                        'Ambience': datasets.features.Sequence(
                            {'touristy': datasets.Value("boolean"),
                             'hipster': datasets.Value("boolean"),
                             'romantic': datasets.Value("boolean"),
                             'divey': datasets.Value("boolean"),
                             'intimate': datasets.Value("boolean"),
                             'trendy': datasets.Value("boolean"),
                             'upscale': datasets.Value("boolean"),
                             'classy': datasets.Value("boolean"),
                             'casual': datasets.Value("boolean")}),
                        'RestaurantsAttire': datasets.Value("string"),
                        'DriveThru':datasets.Value("boolean"),
                        'BusinessAcceptsBitcoin':datasets.Value("boolean"),
                        'NoiseLevel': datasets.Value("string"),
                        'Smoking': datasets.Value("string"),
                        'BestNights':datasets.features.Sequence(
                            {u'monday': datasets.Value("boolean"),
                             u'tuesday': datasets.Value("boolean"),
                             u'wednesday': datasets.Value("boolean"),
                             u'thursday': datasets.Value("boolean"),
                             u'friday': datasets.Value("boolean"),
                             u'saturday': datasets.Value("boolean"),
                             u'sunday': datasets.Value("boolean")}),
                        'GoodForMeal':datasets.features.Sequence(
                            {'dessert': datasets.Value("boolean"),
                             'latenight': datasets.Value("boolean"),
                             'lunch': datasets.Value("boolean"),
                             'dinner': datasets.Value("boolean"),
                             'brunch': datasets.Value("boolean"),
                             'breakfast': datasets.Value("boolean")}),
                        'RestaurantsGoodForGroups':datasets.Value("boolean"),
                        'GoodForDancing':datasets.Value("boolean"),
                        'Music':datasets.features.Sequence(
                            {'dj': datasets.Value("boolean"),
                            'background_music': datasets.Value("boolean"),
                            'no_music': datasets.Value("boolean"),
                             'jukebox': datasets.Value("boolean"),
                             'live': datasets.Value("boolean"),
                             'video': datasets.Value("boolean"),
                             'karaoke': datasets.Value("boolean")}),
                        'DietaryRestrictions':datasets.features.Sequence(
                            {'dairy-free': datasets.Value("boolean"),
                             'gluten-free': datasets.Value("boolean"),
                             'vegan': datasets.Value("boolean"),
                             'kosher': datasets.Value("boolean"),
                             'halal': datasets.Value("boolean"),
                             'soy-free': datasets.Value("boolean"),
                             'vegetarian': datasets.Value("boolean")}),
                        'RestaurantsReservations':datasets.Value("boolean"),
                        'HairSpecializesIn':datasets.features.Sequence(
                          {'straightperms': datasets.Value("boolean"),
                           'coloring': datasets.Value("boolean"),
                           'extensions': datasets.Value("boolean"),
                           'africanamerican': datasets.Value("boolean"),
                           'curly': datasets.Value("boolean"),
                           'kids': datasets.Value("boolean"),
                           'perms': datasets.Value("boolean"),
                           'asian': datasets.Value("boolean")}),
                        'BYOBCorkage': datasets.Value("string"),
                        'BYOB':datasets.Value("boolean"),
                        'DogsAllowed':datasets.Value("boolean"),
                        'RestaurantsCounterService':datasets.Value("boolean"),
                        'RestaurantsTableService':datasets.Value("boolean"),
                        'CoatCheck':datasets.Value("boolean"),
                        'AgesAllowed': datasets.Value("string"),
                        'AcceptsInsurance':datasets.Value("boolean"),
                        'HappyHour':datasets.Value("boolean"),
                        'GoodForKids':datasets.Value("boolean"),
                      }
                  ),

              }
          ),
          # No default supervised_keys (as we have to pass both question
          # and context as input).
          supervised_keys=None,
          homepage="https://www.yelp.com/dataset/download",
          citation=_CITATION,
      )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
      urls_to_download = self._URLS
      downloaded_files = dl_manager.download_and_extract(urls_to_download)

      return [
          datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
          datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
      ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logging.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as csv_file:
            reader = csv.DictReader(csv_file)
            for i, row in enumerate(reader):
                # Convert the row to a dictionary, removing any null values
                example = {key: value for key, value in row.items() if value is not None}
                yield i, example