Datasets:
File size: 4,742 Bytes
94ba28b fd3f8bb 6e9a192 fd3f8bb 46d9432 fd3f8bb 46d9432 fd3f8bb 46d9432 fd3f8bb 46d9432 fd3f8bb 3495eca fd3f8bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
!pip install datasets
import csv
import json
import os
from typing import List
import datasets
import logging
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://www.yelp.com/dataset/download"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
import json
import datasets
class YelpDataset(datasets.GeneratorBasedBuilder):
"""Yelp Dataset focusing on restaurant reviews."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="restaurants", version=VERSION, description="This part of my dataset covers a wide range of restaurants"),
]
DEFAULT_CONFIG_NAME = "restaurants"
_URL = "https://yelpdata.s3.us-west-2.amazonaws.com/"
_URLS = {
"business": _URL + "yelp_academic_dataset_business.json",
"review": _URL + "yelp_academic_dataset_review.json",
}
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"business_id": datasets.Value("string"),
"name": datasets.Value("string"),
"categories": datasets.Value("string"),
"review_id": datasets.Value("string"),
"user_id": datasets.Value("string"),
"stars": datasets.Value("float"),
"text": datasets.Value("string"),
"date": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://www.yelp.com/dataset/download",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract(self._URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"business_path": downloaded_files["business"], "review_path": downloaded_files["review"], "split": "train"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"business_path": downloaded_files["business"], "review_path": downloaded_files["review"], "split": "test"}),
]
def _generate_examples(self, business_path, review_path, split):
"""Yields examples as (key, example) tuples."""
# Load businesses and filter for restaurants
with open(business_path, encoding="utf-8") as f:
businesses = {}
for line in f:
business = json.loads(line)
if business.get("categories") and "Restaurants" in business["categories"]:
businesses[business['business_id']] = business
# Generate examples
with open(review_path, encoding="utf-8") as f:
for line in f:
review = json.loads(line)
business_id = review['business_id']
if business_id in businesses:
yield review['review_id'], {
"business_id": business_id,
"name": businesses[business_id]['name'],
"categories": businesses[business_id]['categories'],
"review_id": review['review_id'],
"user_id": review['user_id'],
"stars": review['stars'],
"text": review['text'],
"date": review['date'],
}
|