File size: 8,010 Bytes
a87c1f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import datasets
import pandas as pd
import numpy as np

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

_HOMEPAGE = ""

_LICENSE = ""

class HealthStatisticsDataset(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "Year": datasets.Value("int32"),
                    "LocationAbbr": datasets.Value("string"),
                    "LocationDesc": datasets.Value("string"),
                    "Latitude": datasets.Value("float32"),
                    "Longitude": datasets.Value("float32"),
                    "Disease_Type": datasets.Value("int32"),
                    "Data_Value_Type": datasets.Value("int32"),
                    "Data_Value": datasets.Value("float32"),
                    "Break_Out_Category": datasets.Value("string"),
                    "Break_Out_Details": datasets.Value("string"),
                    "Break_Out_Type": datasets.Value("int32"),
                    "Life_Expectancy": datasets.Value("float32")
                }
            ), 
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data = pd.read_csv(dl_manager.download_and_extract("https://docs.google.com/uc?export=download&id=1eChYmZ3RMq1v-ek1u6DD2m_dGIrz3sbi&confirm=t"))
        processed_data = self.preprocess_data(data)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data": processed_data},
            ),
        ]

    def _generate_examples(self, data):
        for key, row in data.iterrows():
            year = int(row['Year']) if 'Year' in row else None
            latitude, longitude = None, None 
            if isinstance(row['Geolocation'], str):
                geo_str = row['Geolocation'].replace('POINT (', '').replace(')', '')
                longitude, latitude = map(float, geo_str.split())
            yield key, {
                "Year": year,
                "LocationAbbr": row.get('LocationAbbr', None),
                "LocationDesc": row.get('LocationDesc', None), 
                "Latitude": latitude,
                "Longitude": longitude,
                "Disease_Type": int(row["Disease_Type"]) if "Disease_Type" in row else None,
                "Data_Value_Type": int(row["Data_Value_Type"]) if "Data_Value_Type" in row else None,
                "Data_Value": float(row["Data_Value"]) if "Data_Value" in row else None,
                "Break_Out_Category": row.get("Break_Out_Category", None),
                "Break_Out_Details": row.get("Break_Out_Details", None),
                "Break_Out_Type": int(row["Break_Out_Type"]) if 'Break_Out_Type' in row else None,
                "Life_Expectancy": float(row["Life_Expectancy"]) if row.get("Life_Expectancy") else None
            }

    @staticmethod
    def preprocess_data(data):
        data = data[['YearStart', 'LocationAbbr', 'LocationDesc', 'Geolocation', 'Topic', 'Question', 'Data_Value_Type', 'Data_Value', 'Data_Value_Alt', 
                     'Low_Confidence_Limit', 'High_Confidence_Limit', 'Break_Out_Category', 'Break_Out']]
        
        pd.options.mode.chained_assignment = None
      
        disease_columns = [
          'Major cardiovascular disease mortality rate among US adults (18+); NVSS',
          'Diseases of the heart (heart disease) mortality rate among US adults (18+); NVSS',
          'Acute myocardial infarction (heart attack) mortality rate among US adults (18+); NVSS',
          'Coronary heart disease mortality rate among US adults (18+); NVSS',
          'Heart failure mortality rate among US adults (18+); NVSS',
          'Cerebrovascular disease (stroke) mortality rate among US adults (18+); NVSS',
          'Ischemic stroke mortality rate among US adults (18+); NVSS',
          'Hemorrhagic stroke mortality rate among US adults (18+); NVSS'
          ]
      
        disease_column_mapping = {column_name: index for index, column_name in enumerate(disease_columns)}
        data['Question'] = data['Question'].apply(lambda x: disease_column_mapping.get(x, -1))
      
        sex_columns = ['Male', 'Female']
        sex_column_mapping = {column_name: index + 1 for index, column_name in enumerate(sex_columns)}
      
        age_columns = ['18-24', '25-44', '45-64', '65+']
        age_column_mapping = {column_name: index + 1 for index, column_name in enumerate(age_columns)}
      
        race_columns = ['Non-Hispanic White', 'Non-Hispanic Black', 'Hispanic', 'Other']
        race_column_mapping = {column_name: index + 1 for index, column_name in enumerate(race_columns)}
      
        def map_break_out_category(value):
            if value in sex_column_mapping:
                return sex_column_mapping[value]
            elif value in age_column_mapping:
                return age_column_mapping[value]
            elif value in race_column_mapping:
                return race_column_mapping[value]
            else:
                return value
      
        data['Break_Out_Type'] = data['Break_Out'].apply(map_break_out_category)
        data.drop(columns=['Topic', 'Low_Confidence_Limit', 'High_Confidence_Limit', 'Data_Value_Alt'], axis=1, inplace=True)
        data['Data_Value_Type'] = data['Data_Value_Type'].apply(lambda x: 1 if x == 'Age-Standardized' else 0)
        data.rename(columns={'Question':'Disease_Type', 'YearStart':'Year', 'Break_Out':'Break_Out_Details'}, inplace=True)
        data['Break_Out_Type'] = data['Break_Out_Type'].replace('Overall', 0)

        pd.options.mode.chained_assignment = 'warn'
      
        lt2000 = pd.read_csv("https://docs.google.com/uc?export=download&id=1ktRNl7jg0Z83rkymD9gcsGLdVqVaFtd-&confirm=t")
        lt2000 = lt2000[(lt2000['race_name'] == 'Total') & (lt2000['age_name'] == '<1 year')]
        lt2000 = lt2000[['location_name', 'val']]
        lt2000.rename(columns={'val':'Life_Expectancy'}, inplace=True)
      
        lt2005 = pd.read_csv("https://docs.google.com/uc?export=download&id=1xZqeOgj32-BkOhDTZVc4k_tp1ddnOEh7&confirm=t")
        lt2005 = lt2005[(lt2005['race_name'] == 'Total') & (lt2005['age_name'] == '<1 year')]
        lt2005 = lt2005[['location_name', 'val']]
        lt2005.rename(columns={'val':'Life_Expectancy'}, inplace=True)
      
        lt2010 = pd.read_csv("https://docs.google.com/uc?export=download&id=1ItqHBuuUa38PVytfahaAV8NWwbhHMMg8&confirm=t")
        lt2010 = lt2010[(lt2010['race_name'] == 'Total') & (lt2010['age_name'] == '<1 year')]
        lt2010 = lt2010[['location_name', 'val']]
        lt2010.rename(columns={'val':'Life_Expectancy'}, inplace=True)
      
        lt2015 = pd.read_csv("https://docs.google.com/uc?export=download&id=1rOgQY1RQiry2ionTKM_UWgT8cYD2E0vX&confirm=t")
        lt2015 = lt2015[(lt2015['race_name'] == 'Total') & (lt2015['age_name'] == '<1 year')]
        lt2015 = lt2015[['location_name', 'val']]
        lt2015.rename(columns={'val':'Life_Expectancy'}, inplace=True)
      
        lt_data = pd.concat([lt2000, lt2005, lt2010, lt2015])
        lt_data.drop_duplicates(subset=['location_name'], inplace=True)
      
        data2 = pd.merge(data, lt_data, how='inner', left_on='LocationDesc', right_on='location_name')
        data2.drop(columns=['location_name'], axis=1, inplace=True)
        data2 = data2[(data2['Break_Out_Details'] != '75+') & (data2['Break_Out_Details'] != '35+')]
        data2.rename(columns={'Question':'Disease_Type'}, inplace=True)
        data2['Life_Expectancy'] = np.where(data2['Break_Out_Type'] == 0, data2['Life_Expectancy'], np.nan)
        data2 = data2.reset_index(drop=True)
        return data2