File size: 8,010 Bytes
a87c1f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import datasets
import pandas as pd
import numpy as np
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = ""
_LICENSE = ""
class HealthStatisticsDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"Year": datasets.Value("int32"),
"LocationAbbr": datasets.Value("string"),
"LocationDesc": datasets.Value("string"),
"Latitude": datasets.Value("float32"),
"Longitude": datasets.Value("float32"),
"Disease_Type": datasets.Value("int32"),
"Data_Value_Type": datasets.Value("int32"),
"Data_Value": datasets.Value("float32"),
"Break_Out_Category": datasets.Value("string"),
"Break_Out_Details": datasets.Value("string"),
"Break_Out_Type": datasets.Value("int32"),
"Life_Expectancy": datasets.Value("float32")
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data = pd.read_csv(dl_manager.download_and_extract("https://docs.google.com/uc?export=download&id=1eChYmZ3RMq1v-ek1u6DD2m_dGIrz3sbi&confirm=t"))
processed_data = self.preprocess_data(data)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data": processed_data},
),
]
def _generate_examples(self, data):
for key, row in data.iterrows():
year = int(row['Year']) if 'Year' in row else None
latitude, longitude = None, None
if isinstance(row['Geolocation'], str):
geo_str = row['Geolocation'].replace('POINT (', '').replace(')', '')
longitude, latitude = map(float, geo_str.split())
yield key, {
"Year": year,
"LocationAbbr": row.get('LocationAbbr', None),
"LocationDesc": row.get('LocationDesc', None),
"Latitude": latitude,
"Longitude": longitude,
"Disease_Type": int(row["Disease_Type"]) if "Disease_Type" in row else None,
"Data_Value_Type": int(row["Data_Value_Type"]) if "Data_Value_Type" in row else None,
"Data_Value": float(row["Data_Value"]) if "Data_Value" in row else None,
"Break_Out_Category": row.get("Break_Out_Category", None),
"Break_Out_Details": row.get("Break_Out_Details", None),
"Break_Out_Type": int(row["Break_Out_Type"]) if 'Break_Out_Type' in row else None,
"Life_Expectancy": float(row["Life_Expectancy"]) if row.get("Life_Expectancy") else None
}
@staticmethod
def preprocess_data(data):
data = data[['YearStart', 'LocationAbbr', 'LocationDesc', 'Geolocation', 'Topic', 'Question', 'Data_Value_Type', 'Data_Value', 'Data_Value_Alt',
'Low_Confidence_Limit', 'High_Confidence_Limit', 'Break_Out_Category', 'Break_Out']]
pd.options.mode.chained_assignment = None
disease_columns = [
'Major cardiovascular disease mortality rate among US adults (18+); NVSS',
'Diseases of the heart (heart disease) mortality rate among US adults (18+); NVSS',
'Acute myocardial infarction (heart attack) mortality rate among US adults (18+); NVSS',
'Coronary heart disease mortality rate among US adults (18+); NVSS',
'Heart failure mortality rate among US adults (18+); NVSS',
'Cerebrovascular disease (stroke) mortality rate among US adults (18+); NVSS',
'Ischemic stroke mortality rate among US adults (18+); NVSS',
'Hemorrhagic stroke mortality rate among US adults (18+); NVSS'
]
disease_column_mapping = {column_name: index for index, column_name in enumerate(disease_columns)}
data['Question'] = data['Question'].apply(lambda x: disease_column_mapping.get(x, -1))
sex_columns = ['Male', 'Female']
sex_column_mapping = {column_name: index + 1 for index, column_name in enumerate(sex_columns)}
age_columns = ['18-24', '25-44', '45-64', '65+']
age_column_mapping = {column_name: index + 1 for index, column_name in enumerate(age_columns)}
race_columns = ['Non-Hispanic White', 'Non-Hispanic Black', 'Hispanic', 'Other']
race_column_mapping = {column_name: index + 1 for index, column_name in enumerate(race_columns)}
def map_break_out_category(value):
if value in sex_column_mapping:
return sex_column_mapping[value]
elif value in age_column_mapping:
return age_column_mapping[value]
elif value in race_column_mapping:
return race_column_mapping[value]
else:
return value
data['Break_Out_Type'] = data['Break_Out'].apply(map_break_out_category)
data.drop(columns=['Topic', 'Low_Confidence_Limit', 'High_Confidence_Limit', 'Data_Value_Alt'], axis=1, inplace=True)
data['Data_Value_Type'] = data['Data_Value_Type'].apply(lambda x: 1 if x == 'Age-Standardized' else 0)
data.rename(columns={'Question':'Disease_Type', 'YearStart':'Year', 'Break_Out':'Break_Out_Details'}, inplace=True)
data['Break_Out_Type'] = data['Break_Out_Type'].replace('Overall', 0)
pd.options.mode.chained_assignment = 'warn'
lt2000 = pd.read_csv("https://docs.google.com/uc?export=download&id=1ktRNl7jg0Z83rkymD9gcsGLdVqVaFtd-&confirm=t")
lt2000 = lt2000[(lt2000['race_name'] == 'Total') & (lt2000['age_name'] == '<1 year')]
lt2000 = lt2000[['location_name', 'val']]
lt2000.rename(columns={'val':'Life_Expectancy'}, inplace=True)
lt2005 = pd.read_csv("https://docs.google.com/uc?export=download&id=1xZqeOgj32-BkOhDTZVc4k_tp1ddnOEh7&confirm=t")
lt2005 = lt2005[(lt2005['race_name'] == 'Total') & (lt2005['age_name'] == '<1 year')]
lt2005 = lt2005[['location_name', 'val']]
lt2005.rename(columns={'val':'Life_Expectancy'}, inplace=True)
lt2010 = pd.read_csv("https://docs.google.com/uc?export=download&id=1ItqHBuuUa38PVytfahaAV8NWwbhHMMg8&confirm=t")
lt2010 = lt2010[(lt2010['race_name'] == 'Total') & (lt2010['age_name'] == '<1 year')]
lt2010 = lt2010[['location_name', 'val']]
lt2010.rename(columns={'val':'Life_Expectancy'}, inplace=True)
lt2015 = pd.read_csv("https://docs.google.com/uc?export=download&id=1rOgQY1RQiry2ionTKM_UWgT8cYD2E0vX&confirm=t")
lt2015 = lt2015[(lt2015['race_name'] == 'Total') & (lt2015['age_name'] == '<1 year')]
lt2015 = lt2015[['location_name', 'val']]
lt2015.rename(columns={'val':'Life_Expectancy'}, inplace=True)
lt_data = pd.concat([lt2000, lt2005, lt2010, lt2015])
lt_data.drop_duplicates(subset=['location_name'], inplace=True)
data2 = pd.merge(data, lt_data, how='inner', left_on='LocationDesc', right_on='location_name')
data2.drop(columns=['location_name'], axis=1, inplace=True)
data2 = data2[(data2['Break_Out_Details'] != '75+') & (data2['Break_Out_Details'] != '35+')]
data2.rename(columns={'Question':'Disease_Type'}, inplace=True)
data2['Life_Expectancy'] = np.where(data2['Break_Out_Type'] == 0, data2['Life_Expectancy'], np.nan)
data2 = data2.reset_index(drop=True)
return data2 |