File size: 23,457 Bytes
631a7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02e759
631a7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e188f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import gzip
import os
import shutil
import urllib
from pathlib import Path
from typing import List
from tqdm import tqdm
from ast import literal_eval

import re
import datasets
import numpy as np
import pandas as pd
from datasets import DatasetInfo
from pyfaidx import Fasta
from abc import ABC, abstractmethod
from Bio.Seq import Seq
from Bio import SeqIO
import pysam

"""
--------------------------------------------------------------------------------------------
Reference Genome URLS:
-------------------------------------------------------------------------------------------
"""
H38_REFERENCE_GENOME_URL = (
    "https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
)
H19_REFERENCE_GENOME_URL = (
    "https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/" "hg19.fa.gz"
)

"""
--------------------------------------------------------------------------------------------
Task Specific Handlers:
-------------------------------------------------------------------------------------------
"""

class GenomicLRATaskHandler(ABC):
    """
    Abstract method for the Genomic LRA task handlers.
    """

    @abstractmethod
    def __init__(self, **kwargs):
        pass

    @abstractmethod
    def get_info(self, description: str) -> DatasetInfo:
        """
        Returns the DatasetInfo for the task
        """
        pass

    def split_generators(
            self, dl_manager, cache_dir_root
    ) -> List[datasets.SplitGenerator]:
        """
        Downloads required files using dl_manager and separates them by split.
        """
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"handler": self, "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
            ),
        ]

    @abstractmethod
    def generate_examples(self, split):
        """
        A generator that yields examples for the specified split.
        """
        pass

    @staticmethod
    def hook(t):
        last_b = [0]

        def inner(b=1, bsize=1, tsize=None):
            """
            b  : int, optional
                Number of blocks just transferred [default: 1].
            bsize  : int, optional
                Size of each block (in tqdm units) [default: 1].
            tsize  : int, optional
                Total size (in tqdm units). If [default: None] remains unchanged.
            """
            if tsize is not None:
                t.total = tsize
            t.update((b - last_b[0]) * bsize)
            last_b[0] = b

        return inner

    def download_and_extract_gz(self, file_url, cache_dir_root):
        """
        Downloads and extracts a gz file into the given cache directory. Returns the full file path
        of the extracted gz file.
        Args:
            file_url: url of the gz file to be downloaded and extracted.
            cache_dir_root: Directory to extract file into.
        """
        file_fname = Path(file_url).stem
        file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)

        if not os.path.exists(file_complete_path):
            if not os.path.exists(file_complete_path + ".gz"):
                with tqdm(
                        unit="B",
                        unit_scale=True,
                        unit_divisor=1024,
                        miniters=1,
                        desc=file_url.split("/")[-1],
                ) as t:
                    urllib.request.urlretrieve(
                        file_url, file_complete_path + ".gz", reporthook=self.hook(t)
                    )
            with gzip.open(file_complete_path + ".gz", "rb") as file_in:
                with open(file_complete_path, "wb") as file_out:
                    shutil.copyfileobj(file_in, file_out)
        return file_complete_path


class CagePredictionHandler(GenomicLRATaskHandler):
    """
    Handler for the CAGE prediction task.
    """

    NUM_TRAIN = 33891
    NUM_TEST = 1922
    NUM_VALID = 2195
    DEFAULT_LENGTH = 114688  # 896 x 128bp
    TARGET_SHAPE = (
        896,
        50,
    )  # 50 is a subset of CAGE tracks from the original enformer dataset
    NPZ_SPLIT = 1000  # number of files per npz file.
    NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels

    def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
        """
        Creates a new handler for the CAGE task.
        Args:
            sequence_length: allows for increasing sequence context. Sequence length must be a multiple of 128 to align with binned labels. Note: increasing
            sequence length may decrease the number of usable samples.
        """
        self.reference_genome = None
        self.coordinate_csv_file = None
        self.target_files_by_split = {}

        assert (sequence_length // 128) % 2 == 0, (
            f"Requested sequence length must be an even multuple of 128 to align with the binned labels."
        )

        self.sequence_length = sequence_length

        if self.sequence_length < self.DEFAULT_LENGTH:

            self.TARGET_SHAPE = (self.sequence_length//128,50)
    

    def get_info(self, description: str) -> DatasetInfo:
        """
        Returns the DatasetInfo for the CAGE dataset. Each example
        includes a genomic sequence and a 2D array of labels
        """
        features = datasets.Features(
            {
                # DNA sequence
                "sequence": datasets.Value("string"),
                # array of sequence length x num_labels
                "labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
                # chromosome number
                "chromosome":datasets.Value(dtype="string")
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=description,
            # This defines the different columns of the dataset and their types
            features=features,
        )

    def split_generators(self, dl_manager, cache_dir_root):
        """
        Separates files by split and stores filenames in instance variables.
        The CAGE dataset requires reference genome, coordinate
        csv file,and npy files to be saved.
        """

        # Manually download the reference genome since there are difficulties when
        # streaming the dataset
        reference_genome_file = self.download_and_extract_gz(
            H38_REFERENCE_GENOME_URL, cache_dir_root
        )
        self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)

        self.coordinate_csv_file = dl_manager.download_and_extract(
            "cage_prediction/sequences_coordinates.csv"
        )

        train_file_dict = {}
        for train_key, train_file in self.generate_npz_filenames(
                "train", self.NUM_TRAIN, folder="cage_prediction/targets_subset"
        ):
            train_file_dict[train_key] = dl_manager.download(train_file)

        test_file_dict = {}
        for test_key, test_file in self.generate_npz_filenames(
                "test", self.NUM_TEST, folder="cage_prediction/targets_subset"
        ):
            test_file_dict[test_key] = dl_manager.download(test_file)

        valid_file_dict = {}
        for valid_key, valid_file in self.generate_npz_filenames(
                "valid", self.NUM_VALID, folder="cage_prediction/targets_subset"
        ):
            valid_file_dict[valid_key] = dl_manager.download(valid_file)

        # convert file list to a dict keyed by target number
        self.target_files_by_split["train"] = train_file_dict
        self.target_files_by_split["test"] = test_file_dict
        self.target_files_by_split["validation"] = valid_file_dict


        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"handler": self, "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"handler": self, "split": "validation"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"handler": self, "split": "test"}
            ),
        ]


    def generate_examples(self, split):
        """
        A generator which produces examples for the given split, each with a sequence
        and the corresponding labels. The sequences are padded to the correct
        sequence length and standardized before returning.
        """

        target_files = self.target_files_by_split[split]
        sequence_length = self.sequence_length

        key = 0
        coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
        filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
        for sequential_idx, row in filtered.iterrows():
            start, stop = int(row["start"]) - 1, int(
                row["stop"]) - 1  # -1 since vcf coords are 1-based

            chromosome = row['chrom']
            
            padded_sequence = pad_sequence(
                chromosome=self.reference_genome[chromosome],
                start=start,
                sequence_length=sequence_length,
                end=stop,
            )

            # floor npy_idx to the nearest 1000
            npz_file = np.load(
                target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
            )

            if (
                    split == "validation"
            ):  # npy files are keyed by ["train", "test", "valid"]
                split = "valid"
            targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][0] # select 0 since there is extra dimension
            
            
            # subset the targets if sequence length is smaller than 114688 (
            # DEFAULT_LENGTH)
            if self.sequence_length < self.DEFAULT_LENGTH:
                idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
                targets = targets[idx_diff:-idx_diff]

            
            if padded_sequence:
                yield key, {
                    "labels": targets,
                    "sequence": standardize_sequence(padded_sequence),
                    "chromosome": re.sub("chr","",chromosome)
                }
                key += 1

    @staticmethod
    def generate_npz_filenames(split, total, folder, npz_size=NPZ_SPLIT):
        """
        Generates a list of filenames for the npz files stored in the dataset.
        Yields a tuple of floored multiple of 1000, filename
        Args:
            split: split to generate filenames for. Must be in ['train', 'test', 'valid']
                due to the naming of the files.
            total: total number of npy targets for given split
            folder: folder where data is stored.
            npz_size: number of npy files per npz. Defaults to 1000 because
                this is the number currently used in the dataset.
        """

        for i in range(total // npz_size):
            yield i * npz_size, f"{folder}/targets-{split}-{i * npz_size}-{i * npz_size + (npz_size - 1)}.npz"
        if total % npz_size != 0:
            yield (
                npz_size * (total // npz_size),
                f"{folder}/targets-{split}-"
                f"{npz_size * (total // npz_size)}-"
                f"{npz_size * (total // npz_size) + (total % npz_size - 1)}.npz",
            )


class BulkRnaExpressionHandler(GenomicLRATaskHandler):
    """
    Handler for the Bulk RNA Expression task.
    """

    DEFAULT_LENGTH = 114688

    def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
        """
        Creates a new handler for the Bulk RNA Expression Prediction Task.
        Args:
            sequence_length: Length of the sequence around the TSS_CAGE start site

        """
        self.reference_genome = None
        self.coordinate_csv_file = None
        self.labels_csv_file = None
        self.sequence_length = sequence_length

    def get_info(self, description: str) -> DatasetInfo:
        """
        Returns the DatasetInfo for the Bulk RNA Expression dataset. Each example
        includes a genomic sequence and a list of label values.
        """
        features = datasets.Features(
            {
                # DNA sequence
                "sequence": datasets.Value("string"),
                # list of expression values in each tissue
                "labels": datasets.Sequence(datasets.Value("float32")),
                # chromosome number
                "chromosome":datasets.Value(dtype="string")
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=description,
            # This defines the different columns of the dataset and their types
            features=features,

        )

    def split_generators(self, dl_manager, cache_dir_root):
        """
        Separates files by split and stores filenames in instance variables.
        The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
        csv file,and label csv file to be saved.
        """
        # Manually download the reference genome since there are difficulties when streaming
        reference_genome_file = self.download_and_extract_gz(
            H19_REFERENCE_GENOME_URL, cache_dir_root
        )
        self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)

        self.coordinate_csv_file = dl_manager.download_and_extract(
            "bulk_rna_expression/gene_coordinates.csv"
        )

        self.labels_csv_file = dl_manager.download_and_extract(
            "bulk_rna_expression/rna_expression_values.csv"
        )

        return super().split_generators(dl_manager, cache_dir_root)

    def generate_examples(self, split):
        """
        A generator which produces examples for the given split, each with a sequence
        and the corresponding labels. The sequences are padded to the correct sequence
        length and standardized before returning.
        """
        coordinates_df = pd.read_csv(self.coordinate_csv_file)
        labels_df = pd.read_csv(self.labels_csv_file)

        coordinates_split_df = coordinates_df[coordinates_df["split"] == split]

        key = 0
        for idx, coordinates_row in coordinates_split_df.iterrows():
            start = coordinates_row[
                        "CAGE_representative_TSS"] - 1  # -1 since vcf coords are 1-based

            chromosome = coordinates_row["chrom"]
            labels_row = labels_df.loc[idx].values
            padded_sequence = pad_sequence(
                chromosome=self.reference_genome[chromosome],
                start=start,
                sequence_length=self.sequence_length,
                negative_strand=coordinates_row["strand"] == "-",
            )
            if padded_sequence:
                yield key, {
                    "labels": labels_row,
                    "sequence": standardize_sequence(padded_sequence),
                    "chromosome":re.sub("chr","",chromosome)
                }
                key += 1


class VariantEffectPredictionHandler(GenomicLRATaskHandler):
    """
    Handler for the Variant Effect Prediction task.
    """

    DEFAULT_LENGTH = 114688

    def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
        """
        Creates a new handler for the Variant Effect Prediction Task.
        Args:
            sequence_length: Length of the sequence to pad around the SNP position

        """
        self.reference_genome = None
        self.sequence_length = sequence_length

    def get_info(self, description: str) -> DatasetInfo:
        """
        Returns the DatasetInfo for the Variant Effect Prediction dataset. Each example
        includes a  genomic sequence with the reference allele as well as the genomic sequence with the alternative allele,
        and a binary label.
        """
        features = datasets.Features(
            {
                # DNA sequence
                "ref_forward_sequence": datasets.Value("string"),
                "alt_forward_sequence": datasets.Value("string"),
                # binary label
                "label": datasets.Value(dtype="int8"),
                # tissue type
                "tissue": datasets.Value(dtype="string"),
                # chromosome number
                "chromosome": datasets.Value(dtype="string"),
                # distance to nearest tss
                "distance_to_nearest_tss":datasets.Value(dtype="int32")
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=description,
            # This defines the different columns of the dataset and their types
            features=features,
        )

    def split_generators(self, dl_manager, cache_dir_root):
        """
        Separates files by split and stores filenames in instance variables.
        The variant effect prediction dataset requires the reference hg38 genome and
        coordinates_labels_csv_file to be saved.
        """

        # Manually download the reference genome since there are difficulties
        # when streaming
        reference_genome_file = self.download_and_extract_gz(
            H38_REFERENCE_GENOME_URL, cache_dir_root
        )

        self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
        self.coordinates_labels_csv_file = dl_manager.download_and_extract(
            f"variant_effect_gene_expression/All_Tissues.csv"
        )

        return super().split_generators(dl_manager, cache_dir_root)

    def generate_examples(self, split):
        """
        A generator which produces examples each with ref/alt allele
        and corresponding binary label. The sequences are extended to
        the desired sequence length and standardized before returning.
        """

        coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)

        coordinates_split_df = coordinates_df[coordinates_df["split"] == split]

        key = 0
        for idx, row in coordinates_split_df.iterrows():
            start = row["POS"] - 1  # sub 1 to create idx since vcf coords are 1-based
            alt_allele = row["ALT"]
            label = row["label"]
            tissue = row['tissue']
            chromosome = row["CHROM"]
            distance = int(row["distance_to_nearest_TSS"])

            # get reference forward sequence
            ref_forward = pad_sequence(
                chromosome=self.reference_genome[chromosome],
                start=start,
                sequence_length=self.sequence_length,
                negative_strand=False,
            )

            # only if a valid sequence returned
            if ref_forward:
                # Mutate sequence with the alt allele at the SNP position, which is always
                # centered in the string returned from pad_sequence
                alt_forward = list(ref_forward)
                alt_forward[self.sequence_length // 2] = alt_allele
                alt_forward = "".join(alt_forward)

                yield key, {
                    "label": label,
                    "tissue": tissue,
                    "chromosome": re.sub("chr", "", chromosome),
                    "ref_forward_sequence": standardize_sequence(ref_forward),
                    "alt_forward_sequence": standardize_sequence(alt_forward),
                    "distance_to_nearest_tss": distance
                }
                key += 1

"""
--------------------------------------------------------------------------------------------
Dataset loader:
-------------------------------------------------------------------------------------------
"""

_DESCRIPTION = """
Dataset for benchmark of genomic deep learning models. 
"""

_TASK_HANDLERS = {
    "cage_prediction": CagePredictionHandler,
    "bulk_rna_expression": BulkRnaExpressionHandler,
    "variant_effect_gene_expression": VariantEffectPredictionHandler,
}


# define dataset configs
class GenomicsLRAConfig(datasets.BuilderConfig):
    """
    BuilderConfig.
    """

    def __init__(self, *args, task_name: str, **kwargs):  # type: ignore
        """BuilderConfig for the location tasks dataset.
        Args:
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__()
        self.handler = _TASK_HANDLERS[task_name](task_name=task_name,**kwargs)


# DatasetBuilder
class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
    """
    Tasks to annotate human genome.
    """

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIG_CLASS = GenomicsLRAConfig

    def _info(self) -> DatasetInfo:
        return self.config.handler.get_info(description=_DESCRIPTION)

    def _split_generators(
            self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        """
        Downloads data files and organizes it into train/test/val splits
        """
        return self.config.handler.split_generators(dl_manager, self._cache_dir_root)

    def _generate_examples(self, handler, split):
        """
        Read data files and create examples(yield)
        Args:
            handler: The handler for the current task
            split: A string in ['train', 'test', 'valid']
        """
        yield from handler.generate_examples(split)


"""
--------------------------------------------------------------------------------------------
Global Utils:
-------------------------------------------------------------------------------------------
"""


def standardize_sequence(sequence: str):
    """
    Standardizes the sequence by replacing all unknown characters with N and
    converting to all uppercase.
    Args:
        sequence: genomic sequence to standardize
    """
    pattern = "[^ATCG]"
    # all characters to upper case
    sequence = sequence.upper()
    # replace all characters that are not A,T,C,G with N
    sequence = re.sub(pattern, "N", sequence)
    return sequence


def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=False):
    """
    Extends a given sequence to length sequence_length. If
    padding to the given length is outside the gene, returns
    None.
    Args:
        chromosome: Chromosome from pyfaidx extracted Fasta.
        start: Start index of original sequence.
        sequence_length: Desired sequence length. If sequence length is odd, the
            remainder is added to the end of the sequence.
        end: End index of original sequence. If no end is specified, it creates a
            centered sequence around the start index.
        negative_strand: If negative_strand, returns the reverse compliment of the sequence
    """
    if end:
        pad = (sequence_length - (end - start)) // 2
        start = start - pad
        end = end + pad + (sequence_length % 2)
    else:
        pad = sequence_length // 2
        end = start + pad + (sequence_length % 2)
        start = start - pad

    if start < 0 or end >= len(chromosome):
        return
    if negative_strand:
        return chromosome[start:end].reverse.complement.seq
    return chromosome[start:end].seq