Datasets:

License:
File size: 16,414 Bytes
c53e100
 
 
 
 
 
f19583c
c2587ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c53e100
c2587ed
 
 
 
 
 
 
 
 
 
c53e100
 
c2587ed
 
c53e100
c2587ed
c53e100
 
c2587ed
 
 
c53e100
c2587ed
 
c53e100
 
c2587ed
 
 
 
 
c53e100
c2587ed
 
 
c53e100
 
c2587ed
 
 
c53e100
c2587ed
 
 
 
 
 
 
 
 
c53e100
 
c2587ed
 
 
 
 
 
c53e100
c2587ed
 
 
 
 
 
c53e100
c2587ed
c53e100
c2587ed
 
 
 
 
 
c53e100
c2587ed
 
 
 
 
 
 
 
 
f19583c
edf7824
c53e100
 
 
1ebfc5a
 
c53e100
 
 
45aea03
 
95154b2
e024f19
dee3130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784097b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c53e100
 
 
 
 
 
 
95154b2
c53e100
 
 
95154b2
 
c53e100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0414ebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c53e100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edf7824
c53e100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee3130
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- af
- am
- ar
- arq
- art
- as
- ast
- az
- be
- bg
- bi
- bn
- bo
- bs
- ca
- ceb
- cnh
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hup
- hy
- id
- ig
- inh
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- ltg
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- mt
- my
- nb
- ne
- nl
- nn
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- rup
- sh
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- szl
- ta
- te
- tg
- th
- tl
- tlh
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- zh
language_bcp47:
- art-x-bork
- fr-CA
- pt-BR
- zh-CN
- zh-TW
license:
- cc-by-nc-nd-4.0
multilinguality:
- translation
size_categories:
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: Web Inventory of Transcribed & Translated (WIT) Ted Talks
dataset_info:
- config_name: eu_ca_2014
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - eu
        - ca
  splits:
  - name: train
    num_bytes: 15192
    num_examples: 44
  download_size: 1666674366
  dataset_size: 15192
- config_name: eu_ca_2015
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - eu
        - ca
  splits:
  - name: train
    num_bytes: 18768
    num_examples: 52
  download_size: 1666674366
  dataset_size: 18768
- config_name: eu_ca_2016
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - eu
        - ca
  splits:
  - name: train
    num_bytes: 19506
    num_examples: 54
  download_size: 1666674366
  dataset_size: 19506
- config_name: nl_en_2014
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - nl
        - en
  splits:
  - name: train
    num_bytes: 1035545
    num_examples: 2966
  download_size: 1666674366
  dataset_size: 1035545
- config_name: nl_en_2015
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - nl
        - en
  splits:
  - name: train
    num_bytes: 1292610
    num_examples: 3550
  download_size: 1666674366
  dataset_size: 1292610
- config_name: nl_en_2016
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - nl
        - en
  splits:
  - name: train
    num_bytes: 1434207
    num_examples: 3852
  download_size: 1666674366
  dataset_size: 1434207
- config_name: nl_hi_2014
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - nl
        - hi
  splits:
  - name: train
    num_bytes: 214870
    num_examples: 367
  download_size: 1666674366
  dataset_size: 214870
- config_name: nl_hi_2015
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - nl
        - hi
  splits:
  - name: train
    num_bytes: 252192
    num_examples: 421
  download_size: 1666674366
  dataset_size: 252192
- config_name: nl_hi_2016
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - nl
        - hi
  splits:
  - name: train
    num_bytes: 310922
    num_examples: 496
  download_size: 1666674366
  dataset_size: 310922
- config_name: de_ja_2014
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - ja
  splits:
  - name: train
    num_bytes: 1074403
    num_examples: 2536
  download_size: 1666674366
  dataset_size: 1074403
- config_name: de_ja_2015
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - ja
  splits:
  - name: train
    num_bytes: 1442047
    num_examples: 3247
  download_size: 1666674366
  dataset_size: 1442047
- config_name: de_ja_2016
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - ja
  splits:
  - name: train
    num_bytes: 1630729
    num_examples: 3590
  download_size: 1666674366
  dataset_size: 1630729
- config_name: fr-ca_hi_2014
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr-ca
        - hi
  splits:
  - name: train
    num_bytes: 74472
    num_examples: 127
  download_size: 1666674366
  dataset_size: 74472
- config_name: fr-ca_hi_2015
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr-ca
        - hi
  splits:
  - name: train
    num_bytes: 82448
    num_examples: 141
  download_size: 1666674366
  dataset_size: 82448
- config_name: fr-ca_hi_2016
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr-ca
        - hi
  splits:
  - name: train
    num_bytes: 93425
    num_examples: 156
  download_size: 1666674366
  dataset_size: 93425
config_names:
- de_ja_2014
- de_ja_2015
- de_ja_2016
- eu_ca_2014
- eu_ca_2015
- eu_ca_2016
- fr-ca_hi_2014
- fr-ca_hi_2015
- fr-ca_hi_2016
- nl_en_2014
- nl_en_2015
- nl_en_2016
- nl_hi_2014
- nl_hi_2015
- nl_hi_2016
---

# Dataset Card for Web Inventory of Transcribed & Translated(WIT) Ted Talks

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://wit3.fbk.eu/home
- **Repository:** https://drive.google.com/file/d/1Cz1Un9p8Xn9IpEMMrg2kXSDt0dnjxc4z/view?usp=sharing
- **Paper:** https://www.aclweb.org/anthology/2012.eamt-1.60.pdf
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Mauro Cettolo](mailto:cettolo@fbk.eu)
[Roldano Cattoni](mailto:cattoni@fbk.eu)


### Dataset Summary

The Web Inventory Talk is a collection of the original Ted talks and their translated version. The translations are available in more than 109+ languages, though the distribution is not uniform. 

To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs.
E.g.

`dataset = load_dataset("ted_talks_iwslt", language_pair=("it", "pl"), year="2014")`

The full list of languages is: 'af', 'am', 'ar', 'arq', 'art-x-bork', 'as', 'ast', 'az', 'be', 'bg', 'bi', 'bn', 'bo', 'bs', 'ca', 'ceb', 'cnh', 'cs', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fil', 'fr', 'fr-ca', 'ga', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hup', 'hy', 'id', 'ig', 'inh', 'is', 'it', 'ja', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'ltg', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'my', 'nb', 'ne', 'nl', 'nn', 'oc', 'pa', 'pl', 'ps', 'pt', 'pt-br', 'ro', 'ru', 'rup', 'sh', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'srp', 'sv', 'sw', 'szl', 'ta', 'te', 'tg', 'th', 'tl', 'tlh', 'tr', 'tt', 'ug', 'uk', 'ur', 'uz', 'vi', 'zh', 'zh-cn', 'zh-tw'.

The full list of years is: '2014', '2015', '2016'.

### Supported Tasks and Leaderboards

machine learning task, language modeling and generation

### Languages

Ted talks are mostly held in English (`en`). Almost all of the talks have been translated, by volunteers, into Arabic, Bulgarian, Chinese (simplified), French, Italian, Korean, Portuguese (Brazil) and Spanish. For about 70 other languages, the number of translated talks ranges from several hundreds (e.g. such as other Dutch, German, Hebrew, Romanian) to one (e.g. Hausa, Hupa, Bislama, Ingush, Maltese).

The languages in the dataset are:
- af
- am
- ar
- arq
- art
- as
- ast
- az
- be
- bg
- bi
- bn
- bo
- bs
- ca
- ceb
- cnh
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hup
- hy
- id
- ig
- inh
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- ltg
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- mt
- my
- nb
- ne
- nl
- nn
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- rup
- sh
- si
- sk
- sl
- so
- sq
- sr
- srp: Serbian (`sr`)
- sv
- sw
- szl
- ta
- te
- tg
- th
- tl
- tlh
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- zh

## Dataset Structure

### Data Instances

One example from the dataset is:

```
{'translation': {'hi': 'जब मार्च २०१४ में इबोला का प्रकोप छाया, पर्डिस सबेटी और उनकी टीम को वाइरस के जीनोम का अनुक्रमण करना था, सीखना था कि यह कैसे परवतिर्त होते हैं और फैलते हैं। सबेटी ने तुरंत ही अपने अनुसंधान को वेब में जारी किया, ताकि दुनिया भर के वाइरस ट्रैकर्स और वैज्ञानिक इस तत्काल लड़ाई में शामिल हो सकें। इस बातचीत में, वह दिखाती हैं कि सबका सहयोग ही कुंजी है वाइरस को रोकने के लिए--और लड़ने के लिए आगे आने वाले हमलों से। सबेटी ने कहा,"हमने खुले तौर पर काम किया, साझा किया और साथ काम किया"। "हमे दुनिया को एक वाइरस के विनाश से नहीं, पर अरबों दिलों और दिमागों की एकता से परिभाषित करना है"।',
  'nl': 'Toen Ebola in maart 2014 uitbrak, zijn Pardis Sabeti en haar team aan het werk gegaan om het genoom in kaart te brengen. Zo ontdekten ze hoe het virus zich verspreidde en muteerde. Sabeti zette direct haar onderzoek op het internet, zodat wereldwijd virus-jagers en wetenschappers mee konden werken aan de strijd. In deze talk laat ze zien hoe die openheid geholpen heeft bij het stoppen van het virus en hoe het kan helpen bij de strijd tegen het volgende virus. "We moesten transparant werken, delen en samenwerken". Sabeti zegt:"Laat de wereld niet ten onder gaan aan een virus, maar verlicht worden door miljoenen harten en geesten die samenwerken."'}}
```

The original XML files are formatted like this example:


```
<file id="1">
  <head>
    <url>http://www.ted.com/talks/ryan_holladay_to_hear_this_music_you_have_to_be_there_literally.html</url>
    <pagesize>66634</pagesize>
    <dtime>Sun Jan 12 15:17:32 CET 2014</dtime>
    <content-type>text/html; charset=utf-8</content-type>
    <encoding>utf-8</encoding>
    <videourl>http://download.ted.com/talks/RyanHolladay_2013S.mp4</videourl>
    <videopath>talks/RyanHolladay_2013S.mp4</videopath>
    <transcription>
      <seekvideo id="2939">(Music)</seekvideo>
      <seekvideo id="7555">For any of you who have visited or lived in New York City,</seekvideo>
      <seekvideo id="11221">these shots might start to look familiar.</seekvideo>
      <seekvideo id="16116">This is Central Park,</seekvideo>
      .
      .
      .
      <seekvideo id="361992">for people to interact with</seekvideo>
      <seekvideo id="363709">and experience music.</seekvideo>
      <seekvideo id="365451">Thank you.</seekvideo>
      <seekvideo id="367495">(Applause)</seekvideo>
    </transcription>
    <talkid>1903</talkid>
    <title>Ryan Holladay: To hear this music you have to be there. Literally</title>
    <description>The music industry ......segments of sounds that only play when a listener is physically nearby. (Filmed at TED@BCG.)</description>
    <keywords>entertainment,music,technology</keywords>
    <image>http://images.ted.com/images/ted/d98c17773da6f84e9f915895c270c7ffd2de3778_389x292.jpg</image>
    <date>2014/01/12</date>
    <wordnum>885</wordnum>
    <charnum>5051</charnum>
  </head>
  <content>(Music) For any of you who have visited or lived in New York City, these shots might start to look familiar. This is Central Park, ............new ways for people to interact with and experience music. Thank you. (Applause)</content>
</file>
```

### Data Fields
The fields of the dataset are:
- translation:
  - <lang1>: text in <lang1>
  - <lang2>L translated text in <lang2> 

Information about the original data files:

For each language, a single XML file is generated which includes all talks subtitled in 
that language. Each talk is enclosed in tags `<file id="int">` and `</file>` and includes, among other tags: 

| Tags | Description |
|---|:---|
| `<url>`| the address of the original HTML document of the talk |
| `<speaker>` | the name of the talk speaker |
| `<talkid>` | the numeric talk identifier |
| `<transcript>` | talk subtitles split in captions |
| `<date>` | the issue date of the talk |
| `<content>` |  talk subtitles |


### Data Splits

The paper doesn't provide any specific train-test-dev splits. However data can be split by available years (2014, 2015, 2016)


## Dataset Creation

### Curation Rationale

TED Conference, based in California, has been posting all video recordings of its talks together with subtitles in English and their translations in more than 80 languages. Aside from its cultural and social relevance, this content, which is published under the Creative Commons BYNC-ND license, also represents a precious language resource for the machine translation research community, thanks to its size, variety of topics, and covered languages.

### Source Data

#### Initial Data Collection and Normalization

The talks were collected from the [Ted Conference website](http://www.ted.com/)

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

Translation has been contributed by volunteers

### Personal and Sensitive Information

No personal and sensitive information is provided in the dataset. All talks are publicly available

## Considerations for Using the Data

### Social Impact of Dataset

In statistical machine translation, large amount of in-domain parallel data are usually required to properly train translation and reordering models. With more than 900+ Ted talks (as of 2011) and translation in more than 90+ languages. This dataset provides a useful resource for the MT research community. 

In turn, this enables easy access to a vast treasure trove of human knowledge. 

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

The original dataset was curated by:
[Mauro Cettolo](mailto:cettolo@fbk.eu)
[Roldano Cattoni](mailto:cattoni@fbk.eu)

Author: 
Christian Girardi

For issues with the HuggingFace Dataset implementation, reach out: [Aakash Gupta](mailto:aakashg80@gmail.com)

### Licensing Information

cc-by-nc-nd-4.0

### Citation Information
```
@inproceedings{cettolo-etal-2012-wit3,
    title = "{WIT}3: Web Inventory of Transcribed and Translated Talks",
    author = "Cettolo, Mauro  and
      Girardi, Christian  and
      Federico, Marcello",
    booktitle = "Proceedings of the 16th Annual conference of the European Association for Machine Translation",
    month = may # " 28{--}30",
    year = "2012",
    address = "Trento, Italy",
    publisher = "European Association for Machine Translation",
    url = "https://www.aclweb.org/anthology/2012.eamt-1.60",
    pages = "261--268",
}

```

### Contributions

Thanks to [@skyprince999](https://github.com/skyprince999) for adding this dataset.