File size: 16,414 Bytes
c53e100 f19583c c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed c53e100 c2587ed f19583c edf7824 c53e100 1ebfc5a c53e100 45aea03 95154b2 e024f19 dee3130 784097b c53e100 95154b2 c53e100 95154b2 c53e100 0414ebd c53e100 edf7824 c53e100 dee3130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- af
- am
- ar
- arq
- art
- as
- ast
- az
- be
- bg
- bi
- bn
- bo
- bs
- ca
- ceb
- cnh
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hup
- hy
- id
- ig
- inh
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- ltg
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- mt
- my
- nb
- ne
- nl
- nn
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- rup
- sh
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- szl
- ta
- te
- tg
- th
- tl
- tlh
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- zh
language_bcp47:
- art-x-bork
- fr-CA
- pt-BR
- zh-CN
- zh-TW
license:
- cc-by-nc-nd-4.0
multilinguality:
- translation
size_categories:
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: null
pretty_name: Web Inventory of Transcribed & Translated (WIT) Ted Talks
dataset_info:
- config_name: eu_ca_2014
features:
- name: translation
dtype:
translation:
languages:
- eu
- ca
splits:
- name: train
num_bytes: 15192
num_examples: 44
download_size: 1666674366
dataset_size: 15192
- config_name: eu_ca_2015
features:
- name: translation
dtype:
translation:
languages:
- eu
- ca
splits:
- name: train
num_bytes: 18768
num_examples: 52
download_size: 1666674366
dataset_size: 18768
- config_name: eu_ca_2016
features:
- name: translation
dtype:
translation:
languages:
- eu
- ca
splits:
- name: train
num_bytes: 19506
num_examples: 54
download_size: 1666674366
dataset_size: 19506
- config_name: nl_en_2014
features:
- name: translation
dtype:
translation:
languages:
- nl
- en
splits:
- name: train
num_bytes: 1035545
num_examples: 2966
download_size: 1666674366
dataset_size: 1035545
- config_name: nl_en_2015
features:
- name: translation
dtype:
translation:
languages:
- nl
- en
splits:
- name: train
num_bytes: 1292610
num_examples: 3550
download_size: 1666674366
dataset_size: 1292610
- config_name: nl_en_2016
features:
- name: translation
dtype:
translation:
languages:
- nl
- en
splits:
- name: train
num_bytes: 1434207
num_examples: 3852
download_size: 1666674366
dataset_size: 1434207
- config_name: nl_hi_2014
features:
- name: translation
dtype:
translation:
languages:
- nl
- hi
splits:
- name: train
num_bytes: 214870
num_examples: 367
download_size: 1666674366
dataset_size: 214870
- config_name: nl_hi_2015
features:
- name: translation
dtype:
translation:
languages:
- nl
- hi
splits:
- name: train
num_bytes: 252192
num_examples: 421
download_size: 1666674366
dataset_size: 252192
- config_name: nl_hi_2016
features:
- name: translation
dtype:
translation:
languages:
- nl
- hi
splits:
- name: train
num_bytes: 310922
num_examples: 496
download_size: 1666674366
dataset_size: 310922
- config_name: de_ja_2014
features:
- name: translation
dtype:
translation:
languages:
- de
- ja
splits:
- name: train
num_bytes: 1074403
num_examples: 2536
download_size: 1666674366
dataset_size: 1074403
- config_name: de_ja_2015
features:
- name: translation
dtype:
translation:
languages:
- de
- ja
splits:
- name: train
num_bytes: 1442047
num_examples: 3247
download_size: 1666674366
dataset_size: 1442047
- config_name: de_ja_2016
features:
- name: translation
dtype:
translation:
languages:
- de
- ja
splits:
- name: train
num_bytes: 1630729
num_examples: 3590
download_size: 1666674366
dataset_size: 1630729
- config_name: fr-ca_hi_2014
features:
- name: translation
dtype:
translation:
languages:
- fr-ca
- hi
splits:
- name: train
num_bytes: 74472
num_examples: 127
download_size: 1666674366
dataset_size: 74472
- config_name: fr-ca_hi_2015
features:
- name: translation
dtype:
translation:
languages:
- fr-ca
- hi
splits:
- name: train
num_bytes: 82448
num_examples: 141
download_size: 1666674366
dataset_size: 82448
- config_name: fr-ca_hi_2016
features:
- name: translation
dtype:
translation:
languages:
- fr-ca
- hi
splits:
- name: train
num_bytes: 93425
num_examples: 156
download_size: 1666674366
dataset_size: 93425
config_names:
- de_ja_2014
- de_ja_2015
- de_ja_2016
- eu_ca_2014
- eu_ca_2015
- eu_ca_2016
- fr-ca_hi_2014
- fr-ca_hi_2015
- fr-ca_hi_2016
- nl_en_2014
- nl_en_2015
- nl_en_2016
- nl_hi_2014
- nl_hi_2015
- nl_hi_2016
---
# Dataset Card for Web Inventory of Transcribed & Translated(WIT) Ted Talks
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://wit3.fbk.eu/home
- **Repository:** https://drive.google.com/file/d/1Cz1Un9p8Xn9IpEMMrg2kXSDt0dnjxc4z/view?usp=sharing
- **Paper:** https://www.aclweb.org/anthology/2012.eamt-1.60.pdf
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Mauro Cettolo](mailto:cettolo@fbk.eu)
[Roldano Cattoni](mailto:cattoni@fbk.eu)
### Dataset Summary
The Web Inventory Talk is a collection of the original Ted talks and their translated version. The translations are available in more than 109+ languages, though the distribution is not uniform.
To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs.
E.g.
`dataset = load_dataset("ted_talks_iwslt", language_pair=("it", "pl"), year="2014")`
The full list of languages is: 'af', 'am', 'ar', 'arq', 'art-x-bork', 'as', 'ast', 'az', 'be', 'bg', 'bi', 'bn', 'bo', 'bs', 'ca', 'ceb', 'cnh', 'cs', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fil', 'fr', 'fr-ca', 'ga', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hup', 'hy', 'id', 'ig', 'inh', 'is', 'it', 'ja', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'ltg', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'my', 'nb', 'ne', 'nl', 'nn', 'oc', 'pa', 'pl', 'ps', 'pt', 'pt-br', 'ro', 'ru', 'rup', 'sh', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'srp', 'sv', 'sw', 'szl', 'ta', 'te', 'tg', 'th', 'tl', 'tlh', 'tr', 'tt', 'ug', 'uk', 'ur', 'uz', 'vi', 'zh', 'zh-cn', 'zh-tw'.
The full list of years is: '2014', '2015', '2016'.
### Supported Tasks and Leaderboards
machine learning task, language modeling and generation
### Languages
Ted talks are mostly held in English (`en`). Almost all of the talks have been translated, by volunteers, into Arabic, Bulgarian, Chinese (simplified), French, Italian, Korean, Portuguese (Brazil) and Spanish. For about 70 other languages, the number of translated talks ranges from several hundreds (e.g. such as other Dutch, German, Hebrew, Romanian) to one (e.g. Hausa, Hupa, Bislama, Ingush, Maltese).
The languages in the dataset are:
- af
- am
- ar
- arq
- art
- as
- ast
- az
- be
- bg
- bi
- bn
- bo
- bs
- ca
- ceb
- cnh
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hup
- hy
- id
- ig
- inh
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- ltg
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- mt
- my
- nb
- ne
- nl
- nn
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- rup
- sh
- si
- sk
- sl
- so
- sq
- sr
- srp: Serbian (`sr`)
- sv
- sw
- szl
- ta
- te
- tg
- th
- tl
- tlh
- tr
- tt
- ug
- uk
- ur
- uz
- vi
- zh
## Dataset Structure
### Data Instances
One example from the dataset is:
```
{'translation': {'hi': 'जब मार्च २०१४ में इबोला का प्रकोप छाया, पर्डिस सबेटी और उनकी टीम को वाइरस के जीनोम का अनुक्रमण करना था, सीखना था कि यह कैसे परवतिर्त होते हैं और फैलते हैं। सबेटी ने तुरंत ही अपने अनुसंधान को वेब में जारी किया, ताकि दुनिया भर के वाइरस ट्रैकर्स और वैज्ञानिक इस तत्काल लड़ाई में शामिल हो सकें। इस बातचीत में, वह दिखाती हैं कि सबका सहयोग ही कुंजी है वाइरस को रोकने के लिए--और लड़ने के लिए आगे आने वाले हमलों से। सबेटी ने कहा,"हमने खुले तौर पर काम किया, साझा किया और साथ काम किया"। "हमे दुनिया को एक वाइरस के विनाश से नहीं, पर अरबों दिलों और दिमागों की एकता से परिभाषित करना है"।',
'nl': 'Toen Ebola in maart 2014 uitbrak, zijn Pardis Sabeti en haar team aan het werk gegaan om het genoom in kaart te brengen. Zo ontdekten ze hoe het virus zich verspreidde en muteerde. Sabeti zette direct haar onderzoek op het internet, zodat wereldwijd virus-jagers en wetenschappers mee konden werken aan de strijd. In deze talk laat ze zien hoe die openheid geholpen heeft bij het stoppen van het virus en hoe het kan helpen bij de strijd tegen het volgende virus. "We moesten transparant werken, delen en samenwerken". Sabeti zegt:"Laat de wereld niet ten onder gaan aan een virus, maar verlicht worden door miljoenen harten en geesten die samenwerken."'}}
```
The original XML files are formatted like this example:
```
<file id="1">
<head>
<url>http://www.ted.com/talks/ryan_holladay_to_hear_this_music_you_have_to_be_there_literally.html</url>
<pagesize>66634</pagesize>
<dtime>Sun Jan 12 15:17:32 CET 2014</dtime>
<content-type>text/html; charset=utf-8</content-type>
<encoding>utf-8</encoding>
<videourl>http://download.ted.com/talks/RyanHolladay_2013S.mp4</videourl>
<videopath>talks/RyanHolladay_2013S.mp4</videopath>
<transcription>
<seekvideo id="2939">(Music)</seekvideo>
<seekvideo id="7555">For any of you who have visited or lived in New York City,</seekvideo>
<seekvideo id="11221">these shots might start to look familiar.</seekvideo>
<seekvideo id="16116">This is Central Park,</seekvideo>
.
.
.
<seekvideo id="361992">for people to interact with</seekvideo>
<seekvideo id="363709">and experience music.</seekvideo>
<seekvideo id="365451">Thank you.</seekvideo>
<seekvideo id="367495">(Applause)</seekvideo>
</transcription>
<talkid>1903</talkid>
<title>Ryan Holladay: To hear this music you have to be there. Literally</title>
<description>The music industry ......segments of sounds that only play when a listener is physically nearby. (Filmed at TED@BCG.)</description>
<keywords>entertainment,music,technology</keywords>
<image>http://images.ted.com/images/ted/d98c17773da6f84e9f915895c270c7ffd2de3778_389x292.jpg</image>
<date>2014/01/12</date>
<wordnum>885</wordnum>
<charnum>5051</charnum>
</head>
<content>(Music) For any of you who have visited or lived in New York City, these shots might start to look familiar. This is Central Park, ............new ways for people to interact with and experience music. Thank you. (Applause)</content>
</file>
```
### Data Fields
The fields of the dataset are:
- translation:
- <lang1>: text in <lang1>
- <lang2>L translated text in <lang2>
Information about the original data files:
For each language, a single XML file is generated which includes all talks subtitled in
that language. Each talk is enclosed in tags `<file id="int">` and `</file>` and includes, among other tags:
| Tags | Description |
|---|:---|
| `<url>`| the address of the original HTML document of the talk |
| `<speaker>` | the name of the talk speaker |
| `<talkid>` | the numeric talk identifier |
| `<transcript>` | talk subtitles split in captions |
| `<date>` | the issue date of the talk |
| `<content>` | talk subtitles |
### Data Splits
The paper doesn't provide any specific train-test-dev splits. However data can be split by available years (2014, 2015, 2016)
## Dataset Creation
### Curation Rationale
TED Conference, based in California, has been posting all video recordings of its talks together with subtitles in English and their translations in more than 80 languages. Aside from its cultural and social relevance, this content, which is published under the Creative Commons BYNC-ND license, also represents a precious language resource for the machine translation research community, thanks to its size, variety of topics, and covered languages.
### Source Data
#### Initial Data Collection and Normalization
The talks were collected from the [Ted Conference website](http://www.ted.com/)
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
Translation has been contributed by volunteers
### Personal and Sensitive Information
No personal and sensitive information is provided in the dataset. All talks are publicly available
## Considerations for Using the Data
### Social Impact of Dataset
In statistical machine translation, large amount of in-domain parallel data are usually required to properly train translation and reordering models. With more than 900+ Ted talks (as of 2011) and translation in more than 90+ languages. This dataset provides a useful resource for the MT research community.
In turn, this enables easy access to a vast treasure trove of human knowledge.
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
The original dataset was curated by:
[Mauro Cettolo](mailto:cettolo@fbk.eu)
[Roldano Cattoni](mailto:cattoni@fbk.eu)
Author:
Christian Girardi
For issues with the HuggingFace Dataset implementation, reach out: [Aakash Gupta](mailto:aakashg80@gmail.com)
### Licensing Information
cc-by-nc-nd-4.0
### Citation Information
```
@inproceedings{cettolo-etal-2012-wit3,
title = "{WIT}3: Web Inventory of Transcribed and Translated Talks",
author = "Cettolo, Mauro and
Girardi, Christian and
Federico, Marcello",
booktitle = "Proceedings of the 16th Annual conference of the European Association for Machine Translation",
month = may # " 28{--}30",
year = "2012",
address = "Trento, Italy",
publisher = "European Association for Machine Translation",
url = "https://www.aclweb.org/anthology/2012.eamt-1.60",
pages = "261--268",
}
```
### Contributions
Thanks to [@skyprince999](https://github.com/skyprince999) for adding this dataset. |