|
def load_data (config: dict): |
|
|
|
def get_data_paths(config: dict, path_domains: str, paths_data: dict, matching_dict: dict) -> dict: |
|
|
|
|
|
def list_items(path, filter): |
|
for path in Path(path).rglob(filter): |
|
yield path.resolve().as_posix() |
|
|
|
|
|
data = {'PATH_IMG':[], 'PATH_SP_DATA':[], 'SP_COORDS':[], 'PATH_SP_DATES':[], 'PATH_SP_MASKS':[], 'PATH_LABELS':[], 'MTD_AERIAL':[]} |
|
for domain in path_domains: |
|
aerial = sorted(list(list_items(Path(path_data)/domain, 'IMG*.tif')), key=lambda x: int(x.split('_')[-1][:-4])) |
|
sen2sp = sorted(list(list_items(Path(path_data)/domain, '*data.npy'))) |
|
sprods = sorted(list(list_items(Path(path_data)/domain, '*products.txt'))) |
|
smasks = sorted(list(list_items(Path(path_data)/domain, '*masks.npy'))) |
|
labels = sorted(list(list_items(Path(path_data)/domain, 'MSK*.tif')), key=lambda x: int(x.split('_')[-1][:-4])) |
|
coords = [] |
|
for k in aerial: |
|
coords.append(matching_dict[k.split('/')[-1]]) |
|
|
|
data['PATH_IMG'] += aerial |
|
data['PATH_SP_DATA'] += sen2sp*len(aerial) |
|
data['PATH_SP_DATES'] += sprods*len(aerial) |
|
data['PATH_SP_MASKS'] += smasks*len(aerial) |
|
data['SP_COORDS'] += coords |
|
data['PATH_LABELS'] += labels |
|
|
|
if config['aerial_metadata'] == True: |
|
data = adding_encoded_metadata(config['data']['path_metadata_aerial'], data) |
|
|
|
return data |
|
|
|
|
|
path_data = config['data']['HF_data_path'] |
|
|
|
train_domains, val_domains, test_domains = config['data']['domains_train'], config['data']['domains_val'], config['data']['domains_test'] |
|
|
|
with open(config['data']['path_sp_centroids'], 'r') as file: |
|
matching_dict = json.load(file) |
|
|
|
dict_train = get_data_paths(config, train_domains, path_data, matching_dict) |
|
dict_val = get_data_paths(config, val_domains, path_data, matching_dict) |
|
dict_test = get_data_paths(config, test_domains, path_data, matching_dict) |
|
|
|
return dict_train, dict_val, dict_test |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def adding_encoded_metadata(path_metadata_file: str, dict_paths: dict, loc_enc_size: int = 32): |
|
""" |
|
For every aerial image in the dataset, get metadata, encode and add to data dict. |
|
""" |
|
|
|
def coordenc_opt(coords, enc_size=32) -> np.array: |
|
d = int(enc_size/2) |
|
d_i = np.arange(0, d / 2) |
|
freq = 1 / (10e7 ** (2 * d_i / d)) |
|
|
|
x,y = coords[0]/10e7, coords[1]/10e7 |
|
enc = np.zeros(d * 2) |
|
enc[0:d:2] = np.sin(x * freq) |
|
enc[1:d:2] = np.cos(x * freq) |
|
enc[d::2] = np.sin(y * freq) |
|
enc[d + 1::2] = np.cos(y * freq) |
|
return list(enc) |
|
|
|
def norm_alti(alti: int) -> float: |
|
min_alti = 0 |
|
max_alti = 3164.9099121094 |
|
return [(alti-min_alti) / (max_alti-min_alti)] |
|
|
|
def format_cam(cam: str) -> np.array: |
|
return [[1,0] if 'UCE' in cam else [0,1]][0] |
|
|
|
def cyclical_enc_datetime(date: str, time: str) -> list: |
|
def norm(num: float) -> float: |
|
return (num-(-1))/(1-(-1)) |
|
year, month, day = date.split('-') |
|
if year == '2018': enc_y = [1,0,0,0] |
|
elif year == '2019': enc_y = [0,1,0,0] |
|
elif year == '2020': enc_y = [0,0,1,0] |
|
elif year == '2021': enc_y = [0,0,0,1] |
|
sin_month = np.sin(2*np.pi*(int(month)-1/12)) |
|
cos_month = np.cos(2*np.pi*(int(month)-1/12)) |
|
sin_day = np.sin(2*np.pi*(int(day)/31)) |
|
cos_day = np.cos(2*np.pi*(int(day)/31)) |
|
h,m=time.split('h') |
|
sec_day = int(h) * 3600 + int(m) * 60 |
|
sin_time = np.sin(2*np.pi*(sec_day/86400)) |
|
cos_time = np.cos(2*np.pi*(sec_day/86400)) |
|
return enc_y+[norm(sin_month),norm(cos_month),norm(sin_day),norm(cos_day),norm(sin_time),norm(cos_time)] |
|
|
|
|
|
with open(path_metadata_file, 'r') as f: |
|
metadata_dict = json.load(f) |
|
for img in dict_paths['PATH_IMG']: |
|
curr_img = img.split('/')[-1][:-4] |
|
enc_coords = coordenc_opt([metadata_dict[curr_img]["patch_centroid_x"], metadata_dict[curr_img]["patch_centroid_y"]], enc_size=loc_enc_size) |
|
enc_alti = norm_alti(metadata_dict[curr_img]["patch_centroid_z"]) |
|
enc_camera = format_cam(metadata_dict[curr_img]['camera']) |
|
enc_temporal = cyclical_enc_datetime(metadata_dict[curr_img]['date'], metadata_dict[curr_img]['time']) |
|
mtd_enc = enc_coords+enc_alti+enc_camera+enc_temporal |
|
dict_paths['MTD_AERIAL'].append(mtd_enc) |
|
|
|
return dict_paths |