Datasets:
IGNF
/

ArXiv:
License:
AGarioud commited on
Commit
b880d60
1 Parent(s): 4ebd0df

upoad load_data.py to replace in Flair#2 Git to use HF dataset

Browse files
Files changed (1) hide show
  1. load_data.py +111 -0
load_data.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def load_data (config: dict):
2
+
3
+ def get_data_paths(config: dict, path_domains: str, paths_data: dict, matching_dict: dict) -> dict:
4
+
5
+ #### return data paths
6
+ def list_items(path, filter):
7
+ for path in Path(path).rglob(filter):
8
+ yield path.resolve().as_posix()
9
+
10
+ ## data paths dict
11
+ data = {'PATH_IMG':[], 'PATH_SP_DATA':[], 'SP_COORDS':[], 'PATH_SP_DATES':[], 'PATH_SP_MASKS':[], 'PATH_LABELS':[], 'MTD_AERIAL':[]}
12
+ for domain in path_domains:
13
+ aerial = sorted(list(list_items(Path(path_data)/domain, 'IMG*.tif')), key=lambda x: int(x.split('_')[-1][:-4]))
14
+ sen2sp = sorted(list(list_items(Path(path_data)/domain, '*data.npy')))
15
+ sprods = sorted(list(list_items(Path(path_data)/domain, '*products.txt')))
16
+ smasks = sorted(list(list_items(Path(path_data)/domain, '*masks.npy')))
17
+ labels = sorted(list(list_items(Path(path_data)/domain, 'MSK*.tif')), key=lambda x: int(x.split('_')[-1][:-4]))
18
+ coords = []
19
+ for k in aerial:
20
+ coords.append(matching_dict[k.split('/')[-1]])
21
+
22
+ data['PATH_IMG'] += aerial
23
+ data['PATH_SP_DATA'] += sen2sp*len(aerial)
24
+ data['PATH_SP_DATES'] += sprods*len(aerial)
25
+ data['PATH_SP_MASKS'] += smasks*len(aerial)
26
+ data['SP_COORDS'] += coords
27
+ data['PATH_LABELS'] += labels
28
+
29
+ if config['aerial_metadata'] == True:
30
+ data = adding_encoded_metadata(config['data']['path_metadata_aerial'], data)
31
+
32
+ return data
33
+
34
+ ###### READING CONFIG AND GETTING DATA PATHS
35
+ path_data = config['data']['HF_data_path']
36
+
37
+ train_domains, val_domains, test_domains = config['data']['domains_train'], config['data']['domains_val'], config['data']['domains_test']
38
+
39
+ with open(config['data']['path_sp_centroids'], 'r') as file:
40
+ matching_dict = json.load(file)
41
+
42
+ dict_train = get_data_paths(config, train_domains, path_data, matching_dict)
43
+ dict_val = get_data_paths(config, val_domains, path_data, matching_dict)
44
+ dict_test = get_data_paths(config, test_domains, path_data, matching_dict)
45
+
46
+ return dict_train, dict_val, dict_test
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+ def adding_encoded_metadata(path_metadata_file: str, dict_paths: dict, loc_enc_size: int = 32):
56
+ """
57
+ For every aerial image in the dataset, get metadata, encode and add to data dict.
58
+ """
59
+ #### encode metadata
60
+ def coordenc_opt(coords, enc_size=32) -> np.array:
61
+ d = int(enc_size/2)
62
+ d_i = np.arange(0, d / 2)
63
+ freq = 1 / (10e7 ** (2 * d_i / d))
64
+
65
+ x,y = coords[0]/10e7, coords[1]/10e7
66
+ enc = np.zeros(d * 2)
67
+ enc[0:d:2] = np.sin(x * freq)
68
+ enc[1:d:2] = np.cos(x * freq)
69
+ enc[d::2] = np.sin(y * freq)
70
+ enc[d + 1::2] = np.cos(y * freq)
71
+ return list(enc)
72
+
73
+ def norm_alti(alti: int) -> float:
74
+ min_alti = 0
75
+ max_alti = 3164.9099121094 ### MAX DATASET
76
+ return [(alti-min_alti) / (max_alti-min_alti)]
77
+
78
+ def format_cam(cam: str) -> np.array:
79
+ return [[1,0] if 'UCE' in cam else [0,1]][0]
80
+
81
+ def cyclical_enc_datetime(date: str, time: str) -> list:
82
+ def norm(num: float) -> float:
83
+ return (num-(-1))/(1-(-1))
84
+ year, month, day = date.split('-')
85
+ if year == '2018': enc_y = [1,0,0,0]
86
+ elif year == '2019': enc_y = [0,1,0,0]
87
+ elif year == '2020': enc_y = [0,0,1,0]
88
+ elif year == '2021': enc_y = [0,0,0,1]
89
+ sin_month = np.sin(2*np.pi*(int(month)-1/12)) ## months of year
90
+ cos_month = np.cos(2*np.pi*(int(month)-1/12))
91
+ sin_day = np.sin(2*np.pi*(int(day)/31)) ## max days
92
+ cos_day = np.cos(2*np.pi*(int(day)/31))
93
+ h,m=time.split('h')
94
+ sec_day = int(h) * 3600 + int(m) * 60
95
+ sin_time = np.sin(2*np.pi*(sec_day/86400)) ## total sec in day
96
+ cos_time = np.cos(2*np.pi*(sec_day/86400))
97
+ return enc_y+[norm(sin_month),norm(cos_month),norm(sin_day),norm(cos_day),norm(sin_time),norm(cos_time)]
98
+
99
+
100
+ with open(path_metadata_file, 'r') as f:
101
+ metadata_dict = json.load(f)
102
+ for img in dict_paths['PATH_IMG']:
103
+ curr_img = img.split('/')[-1][:-4]
104
+ enc_coords = coordenc_opt([metadata_dict[curr_img]["patch_centroid_x"], metadata_dict[curr_img]["patch_centroid_y"]], enc_size=loc_enc_size)
105
+ enc_alti = norm_alti(metadata_dict[curr_img]["patch_centroid_z"])
106
+ enc_camera = format_cam(metadata_dict[curr_img]['camera'])
107
+ enc_temporal = cyclical_enc_datetime(metadata_dict[curr_img]['date'], metadata_dict[curr_img]['time'])
108
+ mtd_enc = enc_coords+enc_alti+enc_camera+enc_temporal
109
+ dict_paths['MTD_AERIAL'].append(mtd_enc)
110
+
111
+ return dict_paths