|
--- |
|
dataset_info: |
|
- config_name: ai2d |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 437329975.5701048 |
|
num_examples: 2445 |
|
download_size: 439151768 |
|
dataset_size: 437329975.5701048 |
|
- config_name: aokvqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 871997710.0 |
|
num_examples: 16539 |
|
download_size: 893265070 |
|
dataset_size: 871997710.0 |
|
- config_name: chart2text |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1060645471.4167501 |
|
num_examples: 26963 |
|
download_size: 1103295177 |
|
dataset_size: 1060645471.4167501 |
|
- config_name: chartqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 784762327.9534782 |
|
num_examples: 18266 |
|
download_size: 803229473 |
|
dataset_size: 784762327.9534782 |
|
- config_name: clevr |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 11522617868.0 |
|
num_examples: 70000 |
|
download_size: 13267429872 |
|
dataset_size: 11522617868.0 |
|
- config_name: cocoqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2213960474.0 |
|
num_examples: 46287 |
|
download_size: 2393991009 |
|
dataset_size: 2213960474.0 |
|
- config_name: datikz |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 481233278.0 |
|
num_examples: 47974 |
|
download_size: 613100257 |
|
dataset_size: 481233278.0 |
|
- config_name: diagram_image_to_text |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 18877197.0 |
|
num_examples: 300 |
|
download_size: 18706661 |
|
dataset_size: 18877197.0 |
|
- config_name: docvqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 6885686042.0 |
|
num_examples: 10189 |
|
download_size: 6887803845 |
|
dataset_size: 6885686042.0 |
|
- config_name: dvqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 3689940101.0 |
|
num_examples: 200000 |
|
download_size: 4295254110 |
|
dataset_size: 3689940101.0 |
|
- config_name: figureqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1901887152.0 |
|
num_examples: 100000 |
|
download_size: 2220036667 |
|
dataset_size: 1901887152.0 |
|
- config_name: finqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 135268568.0 |
|
num_examples: 5276 |
|
download_size: 123698250 |
|
dataset_size: 135268568.0 |
|
- config_name: geomverse |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 951640204.0 |
|
num_examples: 9303 |
|
download_size: 323746516 |
|
dataset_size: 951640204.0 |
|
- config_name: hateful_memes |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 3035059823.0 |
|
num_examples: 8500 |
|
download_size: 3054208907 |
|
dataset_size: 3035059823.0 |
|
- config_name: hitab |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 161130580.0 |
|
num_examples: 2500 |
|
download_size: 158295807 |
|
dataset_size: 161130580.0 |
|
- config_name: iam |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1129180352.0 |
|
num_examples: 5663 |
|
download_size: 1128935602 |
|
dataset_size: 1129180352.0 |
|
- config_name: iconqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 264523321.3774117 |
|
num_examples: 27308 |
|
download_size: 326653170 |
|
dataset_size: 264523321.3774117 |
|
- config_name: infographic_vqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 291677986.0 |
|
num_examples: 2118 |
|
download_size: 292351760 |
|
dataset_size: 291677986.0 |
|
- config_name: intergps |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 25528774.867153686 |
|
num_examples: 1308 |
|
download_size: 25388245 |
|
dataset_size: 25528774.867153686 |
|
- config_name: localized_narratives |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 21380844262.41927 |
|
num_examples: 199998 |
|
download_size: 22164342699 |
|
dataset_size: 21380844262.41927 |
|
- config_name: mapqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 3238062926.0 |
|
num_examples: 37417 |
|
download_size: 3307676486 |
|
dataset_size: 3238062926.0 |
|
- config_name: mimic_cgd |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 12592929433.0 |
|
num_examples: 70939 |
|
download_size: 13147641100 |
|
dataset_size: 12592929433.0 |
|
- config_name: multihiertt |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1356766489.046 |
|
num_examples: 7619 |
|
download_size: 1360814135 |
|
dataset_size: 1356766489.046 |
|
- config_name: nlvr2 |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 8375492591.0 |
|
num_examples: 50426 |
|
download_size: 10838882020 |
|
dataset_size: 8375492591.0 |
|
- config_name: ocrvqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5467134439.0 |
|
num_examples: 165746 |
|
download_size: 6078073015 |
|
dataset_size: 5467134439.0 |
|
- config_name: plotqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 7837605221.0 |
|
num_examples: 157070 |
|
download_size: 5320249066 |
|
dataset_size: 7837605221.0 |
|
- config_name: raven |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1506550467.0 |
|
num_examples: 42000 |
|
download_size: 1720691636 |
|
dataset_size: 1506550467.0 |
|
- config_name: robut_sqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 679135952.0 |
|
num_examples: 8514 |
|
download_size: 678722272 |
|
dataset_size: 679135952.0 |
|
- config_name: robut_wikisql |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5950915477.0 |
|
num_examples: 74989 |
|
download_size: 6160300141 |
|
dataset_size: 5950915477.0 |
|
- config_name: robut_wtq |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 4023729236.0 |
|
num_examples: 38246 |
|
download_size: 4061523247 |
|
dataset_size: 4023729236.0 |
|
- config_name: scienceqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 284716288.59257776 |
|
num_examples: 4978 |
|
download_size: 283360156 |
|
dataset_size: 284716288.59257776 |
|
- config_name: screen2words |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1670723783.0 |
|
num_examples: 15730 |
|
download_size: 1346254268 |
|
dataset_size: 1670723783.0 |
|
- config_name: spot_the_diff |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1643123792.0 |
|
num_examples: 8566 |
|
download_size: 1526740548 |
|
dataset_size: 1643123792.0 |
|
- config_name: st_vqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 696265340.0 |
|
num_examples: 17247 |
|
download_size: 720462890 |
|
dataset_size: 696265340.0 |
|
- config_name: tabmwp |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 265348817.73984778 |
|
num_examples: 22723 |
|
download_size: 306648229 |
|
dataset_size: 265348817.73984778 |
|
- config_name: tallyqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 4267143189.0 |
|
num_examples: 98680 |
|
download_size: 4662245152 |
|
dataset_size: 4267143189.0 |
|
- config_name: tat_qa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 73213942.0 |
|
num_examples: 2199 |
|
download_size: 70862028 |
|
dataset_size: 73213942.0 |
|
- config_name: textcaps |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5938676115.0 |
|
num_examples: 21953 |
|
download_size: 6175419911 |
|
dataset_size: 5938676115.0 |
|
- config_name: textvqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5939437331.0 |
|
num_examples: 21953 |
|
download_size: 6175442839 |
|
dataset_size: 5939437331.0 |
|
- config_name: tqa |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 380346870.806369 |
|
num_examples: 1493 |
|
download_size: 378238311 |
|
dataset_size: 380346870.806369 |
|
- config_name: vistext |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 541250281.0 |
|
num_examples: 9969 |
|
download_size: 386023352 |
|
dataset_size: 541250281.0 |
|
- config_name: visual7w |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 4432168161.0 |
|
num_examples: 14366 |
|
download_size: 4443083495 |
|
dataset_size: 4432168161.0 |
|
- config_name: visualmrc |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2941051627.2639995 |
|
num_examples: 3027 |
|
download_size: 2912911810 |
|
dataset_size: 2941051627.2639995 |
|
- config_name: vqarad |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 16561537.0 |
|
num_examples: 313 |
|
download_size: 16226241 |
|
dataset_size: 16561537.0 |
|
- config_name: vqav2 |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 10630091683.0 |
|
num_examples: 82772 |
|
download_size: 13479302437 |
|
dataset_size: 10630091683.0 |
|
- config_name: vsr |
|
features: |
|
- name: images |
|
sequence: image |
|
- name: texts |
|
list: |
|
- name: user |
|
dtype: string |
|
- name: assistant |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 107489763.0 |
|
num_examples: 2157 |
|
download_size: 107576214 |
|
dataset_size: 107489763.0 |
|
configs: |
|
- config_name: ai2d |
|
data_files: |
|
- split: train |
|
path: ai2d/train-* |
|
- config_name: aokvqa |
|
data_files: |
|
- split: train |
|
path: aokvqa/train-* |
|
- config_name: chart2text |
|
data_files: |
|
- split: train |
|
path: chart2text/train-* |
|
- config_name: chartqa |
|
data_files: |
|
- split: train |
|
path: chartqa/train-* |
|
- config_name: clevr |
|
data_files: |
|
- split: train |
|
path: clevr/train-* |
|
- config_name: cocoqa |
|
data_files: |
|
- split: train |
|
path: cocoqa/train-* |
|
- config_name: datikz |
|
data_files: |
|
- split: train |
|
path: datikz/train-* |
|
- config_name: diagram_image_to_text |
|
data_files: |
|
- split: train |
|
path: diagram_image_to_text/train-* |
|
- config_name: docvqa |
|
data_files: |
|
- split: train |
|
path: docvqa/train-* |
|
- config_name: dvqa |
|
data_files: |
|
- split: train |
|
path: dvqa/train-* |
|
- config_name: figureqa |
|
data_files: |
|
- split: train |
|
path: figureqa/train-* |
|
- config_name: finqa |
|
data_files: |
|
- split: train |
|
path: finqa/train-* |
|
- config_name: geomverse |
|
data_files: |
|
- split: train |
|
path: geomverse/train-* |
|
- config_name: hateful_memes |
|
data_files: |
|
- split: train |
|
path: hateful_memes/train-* |
|
- config_name: hitab |
|
data_files: |
|
- split: train |
|
path: hitab/train-* |
|
- config_name: iam |
|
data_files: |
|
- split: train |
|
path: iam/train-* |
|
- config_name: iconqa |
|
data_files: |
|
- split: train |
|
path: iconqa/train-* |
|
- config_name: infographic_vqa |
|
data_files: |
|
- split: train |
|
path: infographic_vqa/train-* |
|
- config_name: intergps |
|
data_files: |
|
- split: train |
|
path: intergps/train-* |
|
- config_name: localized_narratives |
|
data_files: |
|
- split: train |
|
path: localized_narratives/train-* |
|
- config_name: mapqa |
|
data_files: |
|
- split: train |
|
path: mapqa/train-* |
|
- config_name: mimic_cgd |
|
data_files: |
|
- split: train |
|
path: mimic_cgd/train-* |
|
- config_name: multihiertt |
|
data_files: |
|
- split: train |
|
path: multihiertt/train-* |
|
- config_name: nlvr2 |
|
data_files: |
|
- split: train |
|
path: nlvr2/train-* |
|
- config_name: ocrvqa |
|
data_files: |
|
- split: train |
|
path: ocrvqa/train-* |
|
- config_name: plotqa |
|
data_files: |
|
- split: train |
|
path: plotqa/train-* |
|
- config_name: raven |
|
data_files: |
|
- split: train |
|
path: raven/train-* |
|
- config_name: robut_sqa |
|
data_files: |
|
- split: train |
|
path: robut_sqa/train-* |
|
- config_name: robut_wikisql |
|
data_files: |
|
- split: train |
|
path: robut_wikisql/train-* |
|
- config_name: robut_wtq |
|
data_files: |
|
- split: train |
|
path: robut_wtq/train-* |
|
- config_name: scienceqa |
|
data_files: |
|
- split: train |
|
path: scienceqa/train-* |
|
- config_name: screen2words |
|
data_files: |
|
- split: train |
|
path: screen2words/train-* |
|
- config_name: spot_the_diff |
|
data_files: |
|
- split: train |
|
path: spot_the_diff/train-* |
|
- config_name: st_vqa |
|
data_files: |
|
- split: train |
|
path: st_vqa/train-* |
|
- config_name: tabmwp |
|
data_files: |
|
- split: train |
|
path: tabmwp/train-* |
|
- config_name: tallyqa |
|
data_files: |
|
- split: train |
|
path: tallyqa/train-* |
|
- config_name: tat_qa |
|
data_files: |
|
- split: train |
|
path: tat_qa/train-* |
|
- config_name: textcaps |
|
data_files: |
|
- split: train |
|
path: textcaps/train-* |
|
- config_name: textvqa |
|
data_files: |
|
- split: train |
|
path: textvqa/train-* |
|
- config_name: tqa |
|
data_files: |
|
- split: train |
|
path: tqa/train-* |
|
- config_name: vistext |
|
data_files: |
|
- split: train |
|
path: vistext/train-* |
|
- config_name: visual7w |
|
data_files: |
|
- split: train |
|
path: visual7w/train-* |
|
- config_name: visualmrc |
|
data_files: |
|
- split: train |
|
path: visualmrc/train-* |
|
- config_name: vqarad |
|
data_files: |
|
- split: train |
|
path: vqarad/train-* |
|
- config_name: vqav2 |
|
data_files: |
|
- split: train |
|
path: vqav2/train-* |
|
- config_name: vsr |
|
data_files: |
|
- split: train |
|
path: vsr/train-* |
|
--- |
|
# Dataset Card for The Cauldron |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6177322d37f32ecb1e2d4cdf/3q8wnTYvCWyFiCGn2q1OX.png) |
|
|
|
## Dataset description |
|
|
|
The Cauldron is part of the Idefics2 release. |
|
|
|
It is a massive collection of 50 vision-language datasets (training sets only) that were used for the fine-tuning of the vision-language model Idefics2. |
|
|
|
## Load the dataset |
|
|
|
To load the dataset, install the library `datasets` with `pip install datasets`. Then, |
|
``` |
|
from datasets import load_dataset |
|
ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d") |
|
``` |
|
to download and load the config `ai2d` for example. |
|
|
|
## Data fields |
|
|
|
An example of a sample looks as follows: |
|
``` |
|
{ |
|
"images" = [PIL.Image] |
|
"texts" = [ |
|
{ |
|
"user": "Question: How many actions are depicted in the diagram?\nChoices:\nA. 6.\nB. 4.\nC. 8.\nD. 7.\nAnswer with the letter.", |
|
"assistant": "Answer: D", |
|
"source": "TQA" |
|
} |
|
] |
|
} |
|
``` |
|
|
|
In `images`, there is a list of images, to be placed before the text. |
|
In `texts`, there is a conversation between a user and an assistant about the images that is represented by a list of turns. |
|
|
|
## Stats about the datasets in The Cauldron |
|
|
|
| Dataset | # images | # Q/A pairs | # tokens | |
|
|----------------------|----------|-------------|------------| |
|
| *General visual question answering* | |
|
| VQAv2 | 82,772 | 443,757 | 1,595,929 | |
|
| COCO-QA | 46,287 | 78,736 | 286,982 | |
|
| Visual7W | 14,366 | 69,817 | 279,268 | |
|
| A-OKVQA | 16,539 | 17,056 | 236,492 | |
|
| TallyQA | 98,680 | 183,986 | 738,254 | |
|
| OK-VQA | 8,998 | 9,009 | 38,853 | |
|
| HatefulMemes | 8,500 | 8,500 | 25,500 | |
|
| VQA-RAD | 313 | 1,793 | 8,418 | |
|
| Captioning | |
|
| LNarratives | 507,444 | 507,444 | 21,328,731 | |
|
| Screen2Words | 15,730 | 15,743 | 143,103 | |
|
| VSR | 2,157 | 3,354 | 10,062 | |
|
| *OCR, document understanding, text transcription* | |
|
| RenderedText | 999,000 | 999,000 | 27,207,774 | |
|
| DocVQA | 10,189 | 39,463 | 337,829 | |
|
| TextCaps | 21,953 | 21,953 | 389,658 | |
|
| TextVQA | 21,953 | 34,602 | 181,918 | |
|
| ST-VQA | 17,247 | 23,121 | 127,846 | |
|
| OCR-VQA | 165,746 | 801,579 | 6,073,824 | |
|
| VisualMRC | 3,027 | 11,988 | 168,828 | |
|
| IAM | 5,663 | 5,663 | 144,216 | |
|
| InfoVQA | 2,118 | 10,074 | 61,048 | |
|
| Diagram image-to-text| 300 | 300 | 22,196 | |
|
| *Chart/figure understanding* | |
|
| Chart2Text | 26,985 | 30,242 | 2,852,827 | |
|
| DVQA | 200,000 | 2,325,316 | 8,346,234 | |
|
| VisText | 7,057 | 9,969 | 1,245,485 | |
|
| ChartQA | 18,271 | 28,299 | 185,835 | |
|
| PlotQA | 157,070 | 20,249,479 | 8478299.278| |
|
| FigureQA | 100,000 | 1,327,368 | 3,982,104 | |
|
| MapQA | 37,417 | 483,416 | 6,470,485 | |
|
| *Table understanding* | |
|
| TabMWP | 22,729 | 23,059 | 1,948,166 | |
|
| TAT-QA | 2,199 | 13,215 | 283,776 | |
|
| HiTab | 2,500 | 7,782 | 351,299 | |
|
| MultiHiertt | 7,619 | 7,830 | 267,615 | |
|
| FinQA | 5,276 | 6,251 | 242,561 | |
|
| WikiSQL | 74,989 | 86,202 | 9,680,673 | |
|
| SQA | 8,514 | 34,141 | 1,894,824 | |
|
| WTQ | 38,246 | 44,096 | 6,677,013 | |
|
| *Reasoning, logic, maths* | |
|
| GeomVerse | 9,303 | 9,339 | 2,489,459 | |
|
| CLEVR-Math | 70,000 | 788,650 | 3,184,656 | |
|
| CLEVR | 70,000 | 699,989 | 2,396,781 | |
|
| IconQA | 27,315 | 29,859 | 112,969 | |
|
| RAVEN | 42,000 | 42,000 | 105,081 | |
|
| Inter-GPs | 1,451 | 2,101 | 8,404 | |
|
| *Textbook/academic questions* | |
|
| AI2D | 3,099 | 9,708 | 38,832 | |
|
| TQA | 1,496 | 6,501 | 26,004 | |
|
| ScienceQA | 4,985 | 6,218 | 24,872 | |
|
| *Differences between 2 images* | |
|
| NLVR2 | 50,426 | 86,373 | 259,119 | |
|
| GSD | 70,939 | 141,869 | 4,637,229 | |
|
| Spot the diff | 8,566 | 9,524 | 221,477 | |
|
| *Screenshot to code* | |
|
| WebSight | 500,000 | 500,000 | 276,743,299| |
|
| DaTikz | 47,974 | 48,296 | 59,556,252 | |
|
|
|
## Decontamination |
|
|
|
The Cauldron contains only the train split of each sub-datasets. |
|
On top of that, we removed the few examples containing an image also present in the test splits of MMMU, MathVista or MMBench. |
|
|
|
## References to the original datasets |
|
|
|
<details> |
|
<summary>References to the original datasets</summary> |
|
|
|
@misc{AI2D, |
|
title={A Diagram Is Worth A Dozen Images}, |
|
author={Aniruddha Kembhavi and Mike Salvato and Eric Kolve and Minjoon Seo and Hannaneh Hajishirzi and Ali Farhadi}, |
|
year={2016}, |
|
eprint={1603.07396}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@misc{A-OKVQA, |
|
title={A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge}, |
|
author={Dustin Schwenk and Apoorv Khandelwal and Christopher Clark and Kenneth Marino and Roozbeh Mottaghi}, |
|
year={2022}, |
|
eprint={2206.01718}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{Chart2Text, |
|
title = "Chart-to-Text: Generating Natural Language Descriptions for Charts by Adapting the Transformer Model", |
|
author = "Obeid, Jason and |
|
Hoque, Enamul", |
|
editor = "Davis, Brian and |
|
Graham, Yvette and |
|
Kelleher, John and |
|
Sripada, Yaji", |
|
booktitle = "Proceedings of the 13th International Conference on Natural Language Generation", |
|
month = dec, |
|
year = "2020", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.inlg-1.20", |
|
doi = "10.18653/v1/2020.inlg-1.20", |
|
pages = "138--147", |
|
} |
|
|
|
@inproceedings{ChartQA, |
|
title = "{C}hart{QA}: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning", |
|
author = "Masry, Ahmed and |
|
Long, Do and |
|
Tan, Jia Qing and |
|
Joty, Shafiq and |
|
Hoque, Enamul", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", |
|
month = may, |
|
year = "2022", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.findings-acl.177", |
|
doi = "10.18653/v1/2022.findings-acl.177", |
|
pages = "2263--2279", |
|
} |
|
|
|
@misc{CLEVR-Math, |
|
doi = {10.48550/ARXIV.2208.05358}, |
|
url = {https://arxiv.org/abs/2208.05358}, |
|
author = {Lindström, Adam Dahlgren}, |
|
keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7; I.2.10; I.2.6; I.4.8; I.1.4}, |
|
title = {CLEVR-Math: A Dataset for Compositional Language, Visual, and Mathematical Reasoning}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution Share Alike 4.0 International} |
|
} |
|
|
|
@misc{CLEVR, |
|
title={CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning}, |
|
author={Justin Johnson and Bharath Hariharan and Laurens van der Maaten and Li Fei-Fei and C. Lawrence Zitnick and Ross Girshick}, |
|
year={2016}, |
|
eprint={1612.06890}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{CocoQA, |
|
author = {Ren, Mengye and Kiros, Ryan and Zemel, Richard}, |
|
booktitle = {Advances in Neural Information Processing Systems}, |
|
editor = {C. Cortes and N. Lawrence and D. Lee and M. Sugiyama and R. Garnett}, |
|
pages = {}, |
|
publisher = {Curran Associates, Inc.}, |
|
title = {Exploring Models and Data for Image Question Answering}, |
|
url = {https://proceedings.neurips.cc/paper_files/paper/2015/file/831c2f88a604a07ca94314b56a4921b8-Paper.pdf}, |
|
volume = {28}, |
|
year = {2015} |
|
} |
|
|
|
@misc{DaTikz, |
|
title={AutomaTikZ: Text-Guided Synthesis of Scientific Vector Graphics with TikZ}, |
|
author={Jonas Belouadi and Anne Lauscher and Steffen Eger}, |
|
year={2024}, |
|
eprint={2310.00367}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
Diagram image to text: https://huggingface.co/datasets/Kamizuru00/diagram_image_to_text by @Kamizuru00 |
|
|
|
@INPROCEEDINGS{DocVQA, |
|
author={Mathew, Minesh and Karatzas, Dimosthenis and Jawahar, C. V.}, |
|
booktitle={2021 IEEE Winter Conference on Applications of Computer Vision (WACV)}, |
|
title={DocVQA: A Dataset for VQA on Document Images}, |
|
year={2021}, |
|
volume={}, |
|
number={}, |
|
pages={2199-2208}, |
|
keywords={Visualization;Computer vision;Text analysis;Image recognition;Image analysis;Conferences;Layout}, |
|
doi={10.1109/WACV48630.2021.00225}} |
|
|
|
@inproceedings{DVQA, |
|
title={DVQA: Understanding Data Visualizations via Question Answering}, |
|
author={Kafle, Kushal and Cohen, Scott and Price, Brian and Kanan, Christopher}, |
|
booktitle={CVPR}, |
|
year={2018} |
|
} |
|
|
|
@misc{FigureQA, |
|
title={FigureQA: An Annotated Figure Dataset for Visual Reasoning}, |
|
author={Samira Ebrahimi Kahou and Vincent Michalski and Adam Atkinson and Akos Kadar and Adam Trischler and Yoshua Bengio}, |
|
year={2018}, |
|
eprint={1710.07300}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{FinQA, |
|
title = "{F}in{QA}: A Dataset of Numerical Reasoning over Financial Data", |
|
author = "Chen, Zhiyu and |
|
Chen, Wenhu and |
|
Smiley, Charese and |
|
Shah, Sameena and |
|
Borova, Iana and |
|
Langdon, Dylan and |
|
Moussa, Reema and |
|
Beane, Matt and |
|
Huang, Ting-Hao and |
|
Routledge, Bryan and |
|
Wang, William Yang", |
|
editor = "Moens, Marie-Francine and |
|
Huang, Xuanjing and |
|
Specia, Lucia and |
|
Yih, Scott Wen-tau", |
|
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", |
|
month = nov, |
|
year = "2021", |
|
address = "Online and Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.emnlp-main.300", |
|
doi = "10.18653/v1/2021.emnlp-main.300", |
|
pages = "3697--3711", |
|
} |
|
|
|
@misc{GeomVerse, |
|
title={GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning}, |
|
author={Mehran Kazemi and Hamidreza Alvari and Ankit Anand and Jialin Wu and Xi Chen and Radu Soricut}, |
|
year={2023}, |
|
eprint={2312.12241}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{hatefulmeme, |
|
author = {Kiela, Douwe and Firooz, Hamed and Mohan, Aravind and Goswami, Vedanuj and Singh, Amanpreet and Ringshia, Pratik and Testuggine, Davide}, |
|
booktitle = {Advances in Neural Information Processing Systems}, |
|
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M.F. Balcan and H. Lin}, |
|
pages = {2611--2624}, |
|
publisher = {Curran Associates, Inc.}, |
|
title = {The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes}, |
|
url = {https://proceedings.neurips.cc/paper_files/paper/2020/file/1b84c4cee2b8b3d823b30e2d604b1878-Paper.pdf}, |
|
volume = {33}, |
|
year = {2020} |
|
} |
|
|
|
@inproceedings{Hitab, |
|
title = "{H}i{T}ab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation", |
|
author = "Cheng, Zhoujun and |
|
Dong, Haoyu and |
|
Wang, Zhiruo and |
|
Jia, Ran and |
|
Guo, Jiaqi and |
|
Gao, Yan and |
|
Han, Shi and |
|
Lou, Jian-Guang and |
|
Zhang, Dongmei", |
|
editor = "Muresan, Smaranda and |
|
Nakov, Preslav and |
|
Villavicencio, Aline", |
|
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = may, |
|
year = "2022", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.acl-long.78", |
|
doi = "10.18653/v1/2022.acl-long.78", |
|
pages = "1094--1110", |
|
} |
|
|
|
@article{IAM, |
|
author = {Marti, Urs-Viktor and Bunke, H.}, |
|
year = {2002}, |
|
month = {11}, |
|
pages = {39-46}, |
|
title = {The IAM-database: An English sentence database for offline handwriting recognition}, |
|
volume = {5}, |
|
journal = {International Journal on Document Analysis and Recognition}, |
|
doi = {10.1007/s100320200071} |
|
} |
|
|
|
@inproceedings{IconQA, |
|
title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning}, |
|
author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun}, |
|
booktitle = {The 35th Conference on Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks}, |
|
year = {2021} |
|
} |
|
|
|
@INPROCEEDINGS{InfographicVQA, |
|
author={Mathew, Minesh and Bagal, Viraj and Tito, Rubèn and Karatzas, Dimosthenis and Valveny, Ernest and Jawahar, C. V.}, |
|
booktitle={2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, |
|
title={InfographicVQA}, |
|
year={2022}, |
|
volume={}, |
|
number={}, |
|
pages={2582-2591}, |
|
keywords={Visualization;Computer vision;Computational modeling;Layout;Data visualization;Benchmark testing;Brain modeling;Document Analysis Datasets;Evaluation and Comparison of Vision Algorithms;Vision and Languages}, |
|
doi={10.1109/WACV51458.2022.00264} |
|
} |
|
|
|
@inproceedings{Inter-GPS, |
|
title = {Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning}, |
|
author = {Lu, Pan and Gong, Ran and Jiang, Shibiao and Qiu, Liang and Huang, Siyuan and Liang, Xiaodan and Zhu, Song-Chun}, |
|
booktitle = {The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)}, |
|
year = {2021} |
|
} |
|
|
|
@misc{LocalizedNarratives, |
|
title={Connecting Vision and Language with Localized Narratives}, |
|
author={Jordi Pont-Tuset and Jasper Uijlings and Soravit Changpinyo and Radu Soricut and Vittorio Ferrari}, |
|
year={2020}, |
|
eprint={1912.03098}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@misc{MapQA, |
|
title={MapQA: A Dataset for Question Answering on Choropleth Maps}, |
|
author={Shuaichen Chang and David Palzer and Jialin Li and Eric Fosler-Lussier and Ningchuan Xiao}, |
|
year={2022}, |
|
eprint={2211.08545}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@misc{MIMIC-IT-General-Scene-Difference, |
|
title={MIMIC-IT: Multi-Modal In-Context Instruction Tuning}, |
|
author={Bo Li and Yuanhan Zhang and Liangyu Chen and Jinghao Wang and Fanyi Pu and Jingkang Yang and Chunyuan Li and Ziwei Liu}, |
|
year={2023}, |
|
eprint={2306.05425}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{Multihiertt, |
|
title = "{M}ulti{H}iertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data", |
|
author = "Zhao, Yilun and |
|
Li, Yunxiang and |
|
Li, Chenying and |
|
Zhang, Rui", |
|
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = may, |
|
year = "2022", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.acl-long.454", |
|
pages = "6588--6600", |
|
} |
|
|
|
@inproceedings{NLVR2, |
|
title = "A Corpus for Reasoning about Natural Language Grounded in Photographs", |
|
author = "Suhr, Alane and |
|
Zhou, Stephanie and |
|
Zhang, Ally and |
|
Zhang, Iris and |
|
Bai, Huajun and |
|
Artzi, Yoav", |
|
editor = "Korhonen, Anna and |
|
Traum, David and |
|
M{\`a}rquez, Llu{\'\i}s", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P19-1644", |
|
doi = "10.18653/v1/P19-1644", |
|
pages = "6418--6428", |
|
} |
|
|
|
@INPROCEEDINGS{OCR-VQA, |
|
author={Mishra, Anand and Shekhar, Shashank and Singh, Ajeet Kumar and Chakraborty, Anirban}, |
|
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)}, |
|
title={OCR-VQA: Visual Question Answering by Reading Text in Images}, |
|
year={2019}, |
|
volume={}, |
|
number={}, |
|
pages={947-952}, |
|
keywords={Optical character recognition software;Visualization;Task analysis;Knowledge discovery;Text analysis;Text recognition;Character recognition;Optical Character Recognition (OCR), Visual Question Answering (VQA), Document image analysis, textVQA}, |
|
doi={10.1109/ICDAR.2019.00156} |
|
} |
|
|
|
@InProceedings{okvqa, |
|
author = {Kenneth Marino and Mohammad Rastegari and Ali Farhadi and Roozbeh Mottaghi}, |
|
title = {OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge}, |
|
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year = {2019}, |
|
} |
|
|
|
@InProceedings{PlotQA, |
|
author = {Methani, Nitesh and Ganguly, Pritha and Khapra, Mitesh M. and Kumar, Pratyush}, |
|
title = {PlotQA: Reasoning over Scientific Plots}, |
|
booktitle = {The IEEE Winter Conference on Applications of Computer Vision (WACV)}, |
|
month = {March}, |
|
year = {2020} |
|
} |
|
|
|
@inproceedings{RAVEN, |
|
title={RAVEN: A Dataset for Relational and Analogical Visual rEasoNing}, |
|
author={Zhang, Chi and Gao, Feng and Jia, Baoxiong and Zhu, Yixin and Zhu, Song-Chun}, |
|
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year={2019} |
|
} |
|
|
|
RenderedText: https://huggingface.co/datasets/wendlerc/RenderedText by @wendlerc |
|
|
|
@inproceedings{Robut, |
|
title = "{R}obu{T}: A Systematic Study of Table {QA} Robustness Against Human-Annotated Adversarial Perturbations", |
|
author = "Zhao, Yilun and |
|
Zhao, Chen and |
|
Nan, Linyong and |
|
Qi, Zhenting and |
|
Zhang, Wenlin and |
|
Tang, Xiangru and |
|
Mi, Boyu and |
|
Radev, Dragomir", |
|
editor = "Rogers, Anna and |
|
Boyd-Graber, Jordan and |
|
Okazaki, Naoaki", |
|
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2023", |
|
address = "Toronto, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.acl-long.334", |
|
doi = "10.18653/v1/2023.acl-long.334", |
|
pages = "6064--6081", |
|
} |
|
|
|
@inproceedings{SQA, |
|
title = "Search-based Neural Structured Learning for Sequential Question Answering", |
|
author = "Iyyer, Mohit and |
|
Yih, Wen-tau and |
|
Chang, Ming-Wei", |
|
editor = "Barzilay, Regina and |
|
Kan, Min-Yen", |
|
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2017", |
|
address = "Vancouver, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P17-1167", |
|
doi = "10.18653/v1/P17-1167", |
|
pages = "1821--1831", |
|
} |
|
|
|
@misc{WikiSQL, |
|
title={Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning}, |
|
author={Victor Zhong and Caiming Xiong and Richard Socher}, |
|
year={2017}, |
|
eprint={1709.00103}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
@inproceedings{WTQ, |
|
title = "Compositional Semantic Parsing on Semi-Structured Tables", |
|
author = "Pasupat, Panupong and |
|
Liang, Percy", |
|
editor = "Zong, Chengqing and |
|
Strube, Michael", |
|
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2015", |
|
address = "Beijing, China", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P15-1142", |
|
doi = "10.3115/v1/P15-1142", |
|
pages = "1470--1480", |
|
} |
|
|
|
@inproceedings{ScienceQA, |
|
author = {Lu, Pan and Mishra, Swaroop and Xia, Tanglin and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Kalyan, Ashwin}, |
|
booktitle = {Advances in Neural Information Processing Systems}, |
|
editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh}, |
|
pages = {2507--2521}, |
|
publisher = {Curran Associates, Inc.}, |
|
title = {Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering}, |
|
url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf}, |
|
volume = {35}, |
|
year = {2022} |
|
} |
|
|
|
@inproceedings{screen2words, |
|
author = {Wang, Bryan and Li, Gang and Zhou, Xin and Chen, Zhourong and Grossman, Tovi and Li, Yang}, |
|
title = {Screen2Words: Automatic Mobile UI Summarization with Multimodal Learning}, |
|
year = {2021}, |
|
isbn = {9781450386357}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3472749.3474765}, |
|
doi = {10.1145/3472749.3474765}, |
|
booktitle = {The 34th Annual ACM Symposium on User Interface Software and Technology}, |
|
pages = {498–510}, |
|
numpages = {13}, |
|
keywords = {Mobile UI summarization, dataset., deep learning, language-based UI, screen understanding}, |
|
location = {Virtual Event, USA}, |
|
series = {UIST '21} |
|
} |
|
|
|
@inproceedings{SpotTheDiff, |
|
title = "Learning to Describe Differences Between Pairs of Similar Images", |
|
author = "Jhamtani, Harsh and |
|
others", |
|
editor = "Riloff, Ellen and |
|
Chiang, David and |
|
Hockenmaier, Julia and |
|
Tsujii, Jun{'}ichi", |
|
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", |
|
month = oct # "-" # nov, |
|
year = "2018", |
|
address = "Brussels, Belgium", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/D18-1436", |
|
doi = "10.18653/v1/D18-1436", |
|
pages = "4024--4034", |
|
} |
|
|
|
@INPROCEEDINGS{STVQA, |
|
author={Biten, Ali Furkan and Tito, Rubèn and Mafla, Andrés and Gomez, Lluis and Rusiñol, Marçal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis}, |
|
booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)}, |
|
title={Scene Text Visual Question Answering}, |
|
year={2019}, |
|
volume={}, |
|
number={}, |
|
pages={4290-4300}, |
|
keywords={Visualization;Task analysis;Knowledge discovery;Text recognition;Cognition;Computer vision;Semantics}, |
|
doi={10.1109/ICCV.2019.00439} |
|
} |
|
|
|
@inproceedings{TabMWP, |
|
title={Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning}, |
|
author={Lu, Pan and Qiu, Liang and Chang, Kai-Wei and Wu, Ying Nian and Zhu, Song-Chun and Rajpurohit, Tanmay and Clark, Peter and Kalyan, Ashwin}, |
|
booktitle={International Conference on Learning Representations (ICLR)}, |
|
year={2023} |
|
} |
|
|
|
@inproceedings{TallyQA, |
|
title={TallyQA: Answering Complex Counting Questions}, |
|
author={Acharya, Manoj and Kafle, Kushal and Kanan, Christopher}, |
|
booktitle={AAAI}, |
|
year={2019} |
|
} |
|
|
|
@inproceedings{TAT-QA, |
|
title = "{TAT}-{QA}: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance", |
|
author = "Zhu, Fengbin and |
|
Lei, Wenqiang and |
|
Huang, Youcheng and |
|
Wang, Chao and |
|
Zhang, Shuo and |
|
Lv, Jiancheng and |
|
Feng, Fuli and |
|
Chua, Tat-Seng", |
|
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", |
|
month = aug, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.acl-long.254", |
|
doi = "10.18653/v1/2021.acl-long.254", |
|
pages = "3277--3287" |
|
} |
|
|
|
@misc{textcaps, |
|
title={TextCaps: a Dataset for Image Captioning with Reading Comprehension}, |
|
author={Oleksii Sidorov and Ronghang Hu and Marcus Rohrbach and Amanpreet Singh}, |
|
year={2020}, |
|
eprint={2003.12462}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{textvqa, |
|
title={Towards VQA Models That Can Read}, |
|
author={Singh, Amanpreet and Natarjan, Vivek and Shah, Meet and Jiang, Yu and Chen, Xinlei and Parikh, Devi and Rohrbach, Marcus}, |
|
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, |
|
pages={8317-8326}, |
|
year={2019} |
|
} |
|
|
|
@INPROCEEDINGS{TQA, |
|
author={Kembhavi, Aniruddha and Seo, Minjoon and Schwenk, Dustin and Choi, Jonghyun and Farhadi, Ali and Hajishirzi, Hannaneh}, |
|
booktitle={2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
title={Are You Smarter Than a Sixth Grader? Textbook Question Answering for Multimodal Machine Comprehension}, |
|
year={2017}, |
|
volume={}, |
|
number={}, |
|
pages={5376-5384}, |
|
keywords={Knowledge discovery;Visualization;Cognition;Training;Natural languages;Computer vision}, |
|
doi={10.1109/CVPR.2017.571} |
|
} |
|
|
|
@inproceedings{VisText, |
|
title = {{VisText: A Benchmark for Semantically Rich Chart Captioning}}, |
|
author = {Benny J. Tang AND Angie Boggust AND Arvind Satyanarayan}, |
|
booktitle = {The Annual Meeting of the Association for Computational Linguistics (ACL)}, |
|
year = {2023}, |
|
url = {http://vis.csail.mit.edu/pubs/vistext} |
|
} |
|
|
|
@InProceedings{Visual7w, |
|
title = {{Visual7W: Grounded Question Answering in Images}}, |
|
author = {Yuke Zhu and Oliver Groth and Michael Bernstein and Li Fei-Fei}, |
|
booktitle = {{IEEE Conference on Computer Vision and Pattern Recognition}}, |
|
year = 2016, |
|
} |
|
|
|
@inproceedings{VisualMRC, |
|
author = {Ryota Tanaka and |
|
Kyosuke Nishida and |
|
Sen Yoshida}, |
|
title = {VisualMRC: Machine Reading Comprehension on Document Images}, |
|
booktitle = {AAAI}, |
|
year = {2021} |
|
} |
|
|
|
@article{VQA-RAD, |
|
author = {Lau, Jason and Gayen, Soumya and Ben Abacha, Asma and Demner-Fushman, Dina}, |
|
year = {2018}, |
|
month = {11}, |
|
pages = {180251}, |
|
title = {A dataset of clinically generated visual questions and answers about radiology images}, |
|
volume = {5}, |
|
journal = {Scientific Data}, |
|
doi = {10.1038/sdata.2018.251} |
|
} |
|
|
|
@misc{VQAv2, |
|
title={Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering}, |
|
author={Yash Goyal and Tejas Khot and Douglas Summers-Stay and Dhruv Batra and Devi Parikh}, |
|
year={2017}, |
|
eprint={1612.00837}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@misc{VSR, |
|
title={Visual Spatial Reasoning}, |
|
author={Fangyu Liu and Guy Emerson and Nigel Collier}, |
|
year={2023}, |
|
eprint={2205.00363}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
@misc{WebSight, |
|
title={Unlocking the conversion of Web Screenshots into HTML Code with the WebSight Dataset}, |
|
author={Hugo Laurençon and Léo Tronchon and Victor Sanh}, |
|
year={2024}, |
|
eprint={2403.09029}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.HC} |
|
} |
|
</details> |
|
|
|
## Terms of Use |
|
|
|
By using the dataset The Cauldron, you agree to comply with the original licenses of the sub-datasets it contains, as well as the dataset license (CC-BY-4.0). Additionally, if you use this dataset to train a Machine Learning model, you agree to disclose your use of the dataset when releasing the model or an ML application using the model. |
|
|
|
## Licensing Information |
|
|
|
License CC-BY-4.0. |