File size: 9,890 Bytes
3f302b2 71a2ed4 3f302b2 71a2ed4 79fa3f3 aaf60c4 71a2ed4 aaf60c4 79fa3f3 3f302b2 71a2ed4 d6fc057 71a2ed4 79fa3f3 71a2ed4 6aa1df0 1d120cb 6aa1df0 1d120cb 6aa1df0 71a2ed4 79fa3f3 71a2ed4 aaf60c4 71a2ed4 79fa3f3 71a2ed4 79fa3f3 71a2ed4 d6fc057 79fa3f3 3f302b2 79fa3f3 71a2ed4 79fa3f3 71a2ed4 6aa1df0 71a2ed4 79fa3f3 71a2ed4 6aa1df0 71a2ed4 79fa3f3 3f302b2 6aa1df0 3f302b2 79fa3f3 aaf60c4 79fa3f3 3f302b2 aaf60c4 79fa3f3 3f302b2 79fa3f3 3f302b2 79fa3f3 3f302b2 79fa3f3 aaf60c4 6aa1df0 79fa3f3 6aa1df0 79fa3f3 aaf60c4 79fa3f3 aaf60c4 79fa3f3 aaf60c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright 2022 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Caltech 101 loading script"""
from __future__ import annotations
from pathlib import Path
import datasets
import numpy as np
import scipy.io
from datasets.tasks import ImageClassification
_CITATION = """\
@article{FeiFei2004LearningGV,
title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories},
author={Li Fei-Fei and Rob Fergus and Pietro Perona},
journal={Computer Vision and Pattern Recognition Workshop},
year={2004},
}
"""
_DESCRIPTION = """\
Pictures of objects belonging to 101 categories.
About 40 to 800 images per category.
Most categories have about 50 images.
Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato.
The size of each image is roughly 300 x 200 pixels.
"""
_HOMEPAGE = "https://data.caltech.edu/records/20086"
_LICENSE = "CC BY 4.0"
_DATA_URL = "caltech-101.zip"
_NAMES = [
"accordion",
"airplanes",
"anchor",
"ant",
"background_google",
"barrel",
"bass",
"beaver",
"binocular",
"bonsai",
"brain",
"brontosaurus",
"buddha",
"butterfly",
"camera",
"cannon",
"car_side",
"ceiling_fan",
"cellphone",
"chair",
"chandelier",
"cougar_body",
"cougar_face",
"crab",
"crayfish",
"crocodile",
"crocodile_head",
"cup",
"dalmatian",
"dollar_bill",
"dolphin",
"dragonfly",
"electric_guitar",
"elephant",
"emu",
"euphonium",
"ewer",
"faces",
"faces_easy",
"ferry",
"flamingo",
"flamingo_head",
"garfield",
"gerenuk",
"gramophone",
"grand_piano",
"hawksbill",
"headphone",
"hedgehog",
"helicopter",
"ibis",
"inline_skate",
"joshua_tree",
"kangaroo",
"ketch",
"lamp",
"laptop",
"leopards",
"llama",
"lobster",
"lotus",
"mandolin",
"mayfly",
"menorah",
"metronome",
"minaret",
"motorbikes",
"nautilus",
"octopus",
"okapi",
"pagoda",
"panda",
"pigeon",
"pizza",
"platypus",
"pyramid",
"revolver",
"rhino",
"rooster",
"saxophone",
"schooner",
"scissors",
"scorpion",
"sea_horse",
"snoopy",
"soccer_ball",
"stapler",
"starfish",
"stegosaurus",
"stop_sign",
"strawberry",
"sunflower",
"tick",
"trilobite",
"umbrella",
"watch",
"water_lilly",
"wheelchair",
"wild_cat",
"windsor_chair",
"wrench",
"yin_yang",
]
# For some reason, the category names in "101_ObjectCategories" and
# "Annotations" do not always match. This is a manual map between the
# two. Defaults to using same name, since most names are fine.
_ANNOTATION_NAMES_MAP = {
"Faces": "Faces_2",
"Faces_easy": "Faces_3",
"Motorbikes": "Motorbikes_16",
"airplanes": "Airplanes_Side_2",
}
_TRAIN_POINTS_PER_CLASS = 30
class Caltech101(datasets.GeneratorBasedBuilder):
"""Caltech 101 dataset."""
VERSION = datasets.Version("1.0.0")
_BUILDER_CONFIG_WITH_BACKGROUND = datasets.BuilderConfig(
name="with_background_category",
version=VERSION,
description="Dataset containing only the 101 categories and their annotations.",
)
_BUILDER_CONFIG_WITHOUT_BACKGROUND = datasets.BuilderConfig(
name="without_background_category",
version=VERSION,
description="Dataset containing the 101 categories and the additonnal background one. "
"No annotations.",
)
BUILDER_CONFIGS = [
_BUILDER_CONFIG_WITH_BACKGROUND,
_BUILDER_CONFIG_WITHOUT_BACKGROUND,
]
def _info(self):
if self.config.name == self._BUILDER_CONFIG_WITHOUT_BACKGROUND.name:
features = datasets.Features(
{
"image": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
"annotation": {
"obj_contour": datasets.features.Array2D(
shape=(2, None), dtype="float64"
),
"box_coord": datasets.features.Array2D(
shape=(1, 4), dtype="int64"
),
},
}
)
else:
features = datasets.Features(
{
"image": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_root_dir = dl_manager.download_and_extract(_DATA_URL)
img_folder_compress_path = [
file
for file in dl_manager.iter_files(data_root_dir)
if Path(file).name == "101_ObjectCategories.tar.gz"
][0]
annotations_folder_compress_path = [
file
for file in dl_manager.iter_files(data_root_dir)
if Path(file).name == "Annotations.tar"
][0]
img_dir = dl_manager.extract(img_folder_compress_path)
annotation_dir = dl_manager.extract(annotations_folder_compress_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"img_dir": Path(img_dir) / "101_ObjectCategories",
"annotation_dir": Path(annotation_dir) / "Annotations",
"split": "train",
"config_name": self.config.name,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"img_dir": Path(img_dir) / "101_ObjectCategories",
"annotation_dir": Path(annotation_dir) / "Annotations",
"split": "test",
"config_name": self.config.name,
},
),
]
def _generate_examples(self, img_dir, annotation_dir, split, config_name):
# Same stratagy as the one proposed in TF datasets: 30 random examples from each class are added to the train
# split, and the remainder are added to the test split.
# Source: https://github.com/tensorflow/datasets/blob/1106d587f97c4fca68c5b593dc7dc48c790ffa8c/tensorflow_datasets/image_classification/caltech.py#L88-L140
is_train_split = split == "train"
# Sets random seed so the random partitioning of files is the same when
# called for the train and test splits.
numpy_original_state = np.random.get_state()
np.random.seed(1234)
for class_dir in img_dir.iterdir():
class_name = class_dir.name
index_codes = [
image_path.name.split("_")[1][: -len(".jpg")]
for image_path in class_dir.iterdir()
if image_path.name.endswith(".jpg")
]
# _TRAIN_POINTS_PER_CLASS datapoints are sampled for the train split,
# the others constitute the test split.
if _TRAIN_POINTS_PER_CLASS > len(index_codes):
raise ValueError(
f"Fewer than {_TRAIN_POINTS_PER_CLASS} ({len(index_codes)}) points in class {class_dir.name}"
)
train_indices = np.random.choice(
index_codes, _TRAIN_POINTS_PER_CLASS, replace=False
)
test_indices = set(index_codes).difference(train_indices)
indices_to_emit = train_indices if is_train_split else test_indices
if (
class_name == "BACKGROUND_Google"
and config_name == self._BUILDER_CONFIG_WITHOUT_BACKGROUND.name
):
print("skip BACKGROUND_Google")
continue
for indice in indices_to_emit:
record = {
"image": str(class_dir / f"image_{indice}.jpg"),
"label": class_dir.name.lower(),
}
if config_name == self._BUILDER_CONFIG_WITHOUT_BACKGROUND.name:
if class_name in _ANNOTATION_NAMES_MAP:
annotations_class_name = _ANNOTATION_NAMES_MAP[class_name]
else:
annotations_class_name = class_name
data = scipy.io.loadmat(
str(
annotation_dir
/ annotations_class_name
/ f"annotation_{indice}.mat"
)
)
# raise ValueError(data["obj_contour"].dtype, data["box_coord"])
record["annotation"] = {
"obj_contour": data["obj_contour"],
"box_coord": data["box_coord"],
}
yield f"{class_dir.name.lower()}/{f'image_{indice}.jpg'}", record
# Resets the seeds to their previous states.
np.random.set_state(numpy_original_state)
|