Datasets:
File size: 21,488 Bytes
8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 4aee773 505673d 8ab6f76 505673d 8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 4aee773 8ab6f76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
---
license: odc-by
task_categories:
- text-generation
language:
- en
pretty_name: FineWeb-Edu (score >= 2)
size_categories:
- n>1T
configs:
- config_name: default
data_files:
- split: train
path: data/*/*
- config_name: CC-MAIN-2024-10
data_files:
- split: train
path: data/CC-MAIN-2024-10/*
- config_name: CC-MAIN-2023-50
data_files:
- split: train
path: data/CC-MAIN-2023-50/*
- config_name: CC-MAIN-2023-40
data_files:
- split: train
path: data/CC-MAIN-2023-40/*
- config_name: CC-MAIN-2023-23
data_files:
- split: train
path: data/CC-MAIN-2023-23/*
- config_name: CC-MAIN-2023-14
data_files:
- split: train
path: data/CC-MAIN-2023-14/*
- config_name: CC-MAIN-2023-06
data_files:
- split: train
path: data/CC-MAIN-2023-06/*
- config_name: CC-MAIN-2022-49
data_files:
- split: train
path: data/CC-MAIN-2022-49/*
- config_name: CC-MAIN-2022-40
data_files:
- split: train
path: data/CC-MAIN-2022-40/*
- config_name: CC-MAIN-2022-33
data_files:
- split: train
path: data/CC-MAIN-2022-33/*
- config_name: CC-MAIN-2022-27
data_files:
- split: train
path: data/CC-MAIN-2022-27/*
- config_name: CC-MAIN-2022-21
data_files:
- split: train
path: data/CC-MAIN-2022-21/*
- config_name: CC-MAIN-2022-05
data_files:
- split: train
path: data/CC-MAIN-2022-05/*
- config_name: CC-MAIN-2021-49
data_files:
- split: train
path: data/CC-MAIN-2021-49/*
- config_name: CC-MAIN-2021-43
data_files:
- split: train
path: data/CC-MAIN-2021-43/*
- config_name: CC-MAIN-2021-39
data_files:
- split: train
path: data/CC-MAIN-2021-39/*
- config_name: CC-MAIN-2021-31
data_files:
- split: train
path: data/CC-MAIN-2021-31/*
- config_name: CC-MAIN-2021-25
data_files:
- split: train
path: data/CC-MAIN-2021-25/*
- config_name: CC-MAIN-2021-21
data_files:
- split: train
path: data/CC-MAIN-2021-21/*
- config_name: CC-MAIN-2021-17
data_files:
- split: train
path: data/CC-MAIN-2021-17/*
- config_name: CC-MAIN-2021-10
data_files:
- split: train
path: data/CC-MAIN-2021-10/*
- config_name: CC-MAIN-2021-04
data_files:
- split: train
path: data/CC-MAIN-2021-04/*
- config_name: CC-MAIN-2020-50
data_files:
- split: train
path: data/CC-MAIN-2020-50/*
- config_name: CC-MAIN-2020-45
data_files:
- split: train
path: data/CC-MAIN-2020-45/*
- config_name: CC-MAIN-2020-40
data_files:
- split: train
path: data/CC-MAIN-2020-40/*
- config_name: CC-MAIN-2020-34
data_files:
- split: train
path: data/CC-MAIN-2020-34/*
- config_name: CC-MAIN-2020-29
data_files:
- split: train
path: data/CC-MAIN-2020-29/*
- config_name: CC-MAIN-2020-24
data_files:
- split: train
path: data/CC-MAIN-2020-24/*
- config_name: CC-MAIN-2020-16
data_files:
- split: train
path: data/CC-MAIN-2020-16/*
- config_name: CC-MAIN-2020-10
data_files:
- split: train
path: data/CC-MAIN-2020-10/*
- config_name: CC-MAIN-2020-05
data_files:
- split: train
path: data/CC-MAIN-2020-05/*
- config_name: CC-MAIN-2019-51
data_files:
- split: train
path: data/CC-MAIN-2019-51/*
- config_name: CC-MAIN-2019-47
data_files:
- split: train
path: data/CC-MAIN-2019-47/*
- config_name: CC-MAIN-2019-43
data_files:
- split: train
path: data/CC-MAIN-2019-43/*
- config_name: CC-MAIN-2019-39
data_files:
- split: train
path: data/CC-MAIN-2019-39/*
- config_name: CC-MAIN-2019-35
data_files:
- split: train
path: data/CC-MAIN-2019-35/*
- config_name: CC-MAIN-2019-30
data_files:
- split: train
path: data/CC-MAIN-2019-30/*
- config_name: CC-MAIN-2019-26
data_files:
- split: train
path: data/CC-MAIN-2019-26/*
- config_name: CC-MAIN-2019-22
data_files:
- split: train
path: data/CC-MAIN-2019-22/*
- config_name: CC-MAIN-2019-18
data_files:
- split: train
path: data/CC-MAIN-2019-18/*
- config_name: CC-MAIN-2019-13
data_files:
- split: train
path: data/CC-MAIN-2019-13/*
- config_name: CC-MAIN-2019-09
data_files:
- split: train
path: data/CC-MAIN-2019-09/*
- config_name: CC-MAIN-2019-04
data_files:
- split: train
path: data/CC-MAIN-2019-04/*
- config_name: CC-MAIN-2018-51
data_files:
- split: train
path: data/CC-MAIN-2018-51/*
- config_name: CC-MAIN-2018-47
data_files:
- split: train
path: data/CC-MAIN-2018-47/*
- config_name: CC-MAIN-2018-43
data_files:
- split: train
path: data/CC-MAIN-2018-43/*
- config_name: CC-MAIN-2018-39
data_files:
- split: train
path: data/CC-MAIN-2018-39/*
- config_name: CC-MAIN-2018-34
data_files:
- split: train
path: data/CC-MAIN-2018-34/*
- config_name: CC-MAIN-2018-30
data_files:
- split: train
path: data/CC-MAIN-2018-30/*
- config_name: CC-MAIN-2018-26
data_files:
- split: train
path: data/CC-MAIN-2018-26/*
- config_name: CC-MAIN-2018-22
data_files:
- split: train
path: data/CC-MAIN-2018-22/*
- config_name: CC-MAIN-2018-17
data_files:
- split: train
path: data/CC-MAIN-2018-17/*
- config_name: CC-MAIN-2018-13
data_files:
- split: train
path: data/CC-MAIN-2018-13/*
- config_name: CC-MAIN-2018-09
data_files:
- split: train
path: data/CC-MAIN-2018-09/*
- config_name: CC-MAIN-2018-05
data_files:
- split: train
path: data/CC-MAIN-2018-05/*
- config_name: CC-MAIN-2017-51
data_files:
- split: train
path: data/CC-MAIN-2017-51/*
- config_name: CC-MAIN-2017-47
data_files:
- split: train
path: data/CC-MAIN-2017-47/*
- config_name: CC-MAIN-2017-43
data_files:
- split: train
path: data/CC-MAIN-2017-43/*
- config_name: CC-MAIN-2017-39
data_files:
- split: train
path: data/CC-MAIN-2017-39/*
- config_name: CC-MAIN-2017-34
data_files:
- split: train
path: data/CC-MAIN-2017-34/*
- config_name: CC-MAIN-2017-30
data_files:
- split: train
path: data/CC-MAIN-2017-30/*
- config_name: CC-MAIN-2017-26
data_files:
- split: train
path: data/CC-MAIN-2017-26/*
- config_name: CC-MAIN-2017-22
data_files:
- split: train
path: data/CC-MAIN-2017-22/*
- config_name: CC-MAIN-2017-17
data_files:
- split: train
path: data/CC-MAIN-2017-17/*
- config_name: CC-MAIN-2017-13
data_files:
- split: train
path: data/CC-MAIN-2017-13/*
- config_name: CC-MAIN-2017-09
data_files:
- split: train
path: data/CC-MAIN-2017-09/*
- config_name: CC-MAIN-2017-04
data_files:
- split: train
path: data/CC-MAIN-2017-04/*
- config_name: CC-MAIN-2016-50
data_files:
- split: train
path: data/CC-MAIN-2016-50/*
- config_name: CC-MAIN-2016-44
data_files:
- split: train
path: data/CC-MAIN-2016-44/*
- config_name: CC-MAIN-2016-40
data_files:
- split: train
path: data/CC-MAIN-2016-40/*
- config_name: CC-MAIN-2016-36
data_files:
- split: train
path: data/CC-MAIN-2016-36/*
- config_name: CC-MAIN-2016-30
data_files:
- split: train
path: data/CC-MAIN-2016-30/*
- config_name: CC-MAIN-2016-26
data_files:
- split: train
path: data/CC-MAIN-2016-26/*
- config_name: CC-MAIN-2016-22
data_files:
- split: train
path: data/CC-MAIN-2016-22/*
- config_name: CC-MAIN-2016-18
data_files:
- split: train
path: data/CC-MAIN-2016-18/*
- config_name: CC-MAIN-2016-07
data_files:
- split: train
path: data/CC-MAIN-2016-07/*
- config_name: CC-MAIN-2015-48
data_files:
- split: train
path: data/CC-MAIN-2015-48/*
- config_name: CC-MAIN-2015-40
data_files:
- split: train
path: data/CC-MAIN-2015-40/*
- config_name: CC-MAIN-2015-35
data_files:
- split: train
path: data/CC-MAIN-2015-35/*
- config_name: CC-MAIN-2015-32
data_files:
- split: train
path: data/CC-MAIN-2015-32/*
- config_name: CC-MAIN-2015-27
data_files:
- split: train
path: data/CC-MAIN-2015-27/*
- config_name: CC-MAIN-2015-22
data_files:
- split: train
path: data/CC-MAIN-2015-22/*
- config_name: CC-MAIN-2015-18
data_files:
- split: train
path: data/CC-MAIN-2015-18/*
- config_name: CC-MAIN-2015-14
data_files:
- split: train
path: data/CC-MAIN-2015-14/*
- config_name: CC-MAIN-2015-11
data_files:
- split: train
path: data/CC-MAIN-2015-11/*
- config_name: CC-MAIN-2015-06
data_files:
- split: train
path: data/CC-MAIN-2015-06/*
- config_name: CC-MAIN-2014-52
data_files:
- split: train
path: data/CC-MAIN-2014-52/*
- config_name: CC-MAIN-2014-49
data_files:
- split: train
path: data/CC-MAIN-2014-49/*
- config_name: CC-MAIN-2014-42
data_files:
- split: train
path: data/CC-MAIN-2014-42/*
- config_name: CC-MAIN-2014-41
data_files:
- split: train
path: data/CC-MAIN-2014-41/*
- config_name: CC-MAIN-2014-35
data_files:
- split: train
path: data/CC-MAIN-2014-35/*
- config_name: CC-MAIN-2014-23
data_files:
- split: train
path: data/CC-MAIN-2014-23/*
- config_name: CC-MAIN-2014-15
data_files:
- split: train
path: data/CC-MAIN-2014-15/*
- config_name: CC-MAIN-2014-10
data_files:
- split: train
path: data/CC-MAIN-2014-10/*
- config_name: CC-MAIN-2013-48
data_files:
- split: train
path: data/CC-MAIN-2013-48/*
- config_name: CC-MAIN-2013-20
data_files:
- split: train
path: data/CC-MAIN-2013-20/*
---
# π FineWeb-Edu-score-2
<center>
<img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/wwRnEQydH9qdRtFofIE-A.png" alt="FineWeb-Edu: The finest collection of educational content the web has to offer">
</center>
> 1.3 trillion tokens of the finest educational data the π web has to offer
## What is it?
π FineWeb-Edu dataset consists of **1.3T tokens** ([FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)) and **5.4T tokens** of educational web pages filtered from π· FineWeb dataset. This is the 5.4 trillion version.
### Note: this version uses a lower educational score threshold = 2, which results in more coverage, but lower quality documents.
To enhance FineWeb's quality, we developed an [educational quality classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier) using annotations generated by LLama3-70B-Instruct. We then used this classifier to retain only the most educational web pages. FineWeb-Edu outperforms FineWeb on popular benchmarks and shows the power of classifiers trained on synthetic data.
The [Dataset Curation](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu#dataset-curation) section details the process for creating the dataset.
## What is being released?
Along with the dataset, which includes all filtered CommonCrawl dumps since 2013, we also release the educational classifier used for the filtering as well as the code for training it and running inference at: https://github.com/huggingface/cosmopedia/tree/main/classification.
## How to load the dataset
Similarily to FineWeb, You can load the full dataset or a specific crawl/dump. Dumps have the format `CC-MAIN-(year)-(week number)`.
### Using π [`datatrove`](https://github.com/huggingface/datatrove/)
```python
from datatrove.pipeline.readers import ParquetReader
# limit determines how many documents will be streamed (remove for all)
data_reader = ParquetReader("hf://datasets/HuggingFaceFW/fineweb-edu-score-2", glob_pattern="data/*/*.parquet", limit=1000)
data_reader = ParquetReader("hf://datasets/HuggingFaceFW/fineweb-edu-score-2/CC-MAIN-2024-10", limit=1000)
for document in data_reader():
# do something with document
print(document)
###############################
# OR for a processing pipeline:
###############################
from datatrove.executor import LocalPipelineExecutor
from datatrove.pipeline.readers import ParquetReader
from datatrove.pipeline.filters import LambdaFilter
from datatrove.pipeline.writers import JsonlWriter
pipeline_exec = LocalPipelineExecutor(
pipeline=[
ParquetReader("hf://datasets/HuggingFaceFW/fineweb-edu-score-2/CC-MAIN-2024-10", limit=1000),
LambdaFilter(lambda doc: "hugging" in doc.text),
JsonlWriter("some-output-path")
],
tasks=10
)
pipeline_exec.run()
```
### Using `datasets`
```python
from datasets import load_dataset
fw = load_dataset("HuggingFaceFW/fineweb-edu-score-2", name="CC-MAIN-2024-10", split="train", streaming=True)
```
## Dataset curation
A new approach has recently emerged for filtering LLM training datasets: using synthetic data to develop classifiers for identifying educational content. This technique was used in the trainings of [LLama3](https://ai.meta.com/blog/meta-llama-3-meta-ai-responsibility/), [Claude3](https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf) and [Phi3](https://arxiv.org/abs/2404.14219), but its large-scale impact on web data filtering hasn't been fully explored or published.
The highly popular Phi3 models were trained on 3.3 and 4.8 trillion tokens, with the paper stating: βOur training data consists of heavily filtered publicly available web data (according to the 'educational level') from various open internet sources, as well as synthetic LLM-generated data". Similarly, the LLama3 blog post notes: βWe found that previous generations of Llama are good at identifying high-quality data, so we used Llama 2 to help build the text-quality classifiers that are powering Llama 3.β However these classifiers and filtered datasets are not publicly available. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by [LLama3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) to create FineWeb-Edu.
### Annotation
We used [Llama3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) to score 500k FineWeb samples for their educational quality on a scale from 0 to 5.
We explored various prompts and found that the additive scale by [Yuan et al.](https://arxiv.org/pdf/2401.10020) worked best. To avoid the LLM favoring highly technical pages like arXiv abstracts and submissions, we focused on grade-school and middle-school level knowledge. By setting a threshold of 3 (on a scale of 0 to 5) during the filtering process, we were able to also retain some high-level educational pages. The final prompt can be found in this blog post TODO.
We also experimented with different LLMs: Llama3-70B-Instruct, Mixtral-8x-7B-Instruct, and Mixtral-8x22B-Instruct. Llama3 and Mixtral-8x22B produced similar scores, while Mixtral-8x7B tended to be more generous, not fully adhering to the score scale. Verga et al. suggest using multiple LLMs as juries. We tried averaging the scores from the three models, but this shifted the distribution to the right due to the higher scores from Mixtral-8x7B. Training on a dataset filtered with a classifier using jury annotations performed worse than using a classifier based on Llama3 annotations. We hypothesize that the jury-based approach retains more low-quality samples.
### Classifier training
We fine-tuned a Bert-like regression model using these annotations, based on [Snowflake-arctic-embed](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). When converted to a binary classification using a score of 3 as a threshold for keeping and removing files, the model achieved an F1 score of 82%. The classification of FineWeb 15T tokens took 6k H100 GPU hours.
The classifier is available at: [https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier/ ](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier/)
### Filtering
We filtered out samples with scores lower than 3. This removed 92% of the dataset, leaving us with 1.2T educational tokens. Our ablation demonstrated that this refined dataset significantly outperforms the original FineWeb dumps and even the best dump, FineWeb-2024-10. To retain more tokens, we also experimented with a less strict threshold of 2 instead of 3. This approach preserved 4.5T tokens and still outperformed the non-filtered dataset.
TODO: add ablation results
We release these two dataset as [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) and [FineWeb-Edu-score-2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu-score-2) along with the classifier.
## Dataset performance evaluation and ablations
We conducted our dataset performance ablations and evaluations by training 1.8B parameters models on 28B tokens and then 350B billion tokens to validate the results.
The detailed configurations for training the models can be found here (TODO).
FineWeb-Edu outperforms FineWeb and other web datasets on all popular benchmarks.
TODO: add barplots & agg_score curves
You will find these models on [this collection](https://huggingface.co/collections/HuggingFaceFW/ablation-models-662457b0d213e8c14fe47f32). The FineWeb-Edu ablation model (trained on 350B tokens) is available at [https://huggingface.co/HuggingFaceFW/ablation-model-fineweb-edu](https://huggingface.co/HuggingFaceFW/ablation-model-fineweb-edu).
## Considerations for Using the Data
This section is copied from the parent dataset: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb).
### Social Impact of Dataset
With the release of this dataset we aim to make model training more accessible to the machine learning community at large.
While multiple open-weights models with strong performance have been publicly released in the past, more often than not these releases are not accompanied by the corresponding training dataset. This is unfortunate as the dataset specificities and characteristics have been demonstrated to have a very large impact and role in the performances of the models. As the creation of a high quality training dataset is a fundamental requirement to training an LLM capable of excelling at downstream tasks, with π· FineWeb we (a) not only make the dataset creation process more transparent, by sharing our entire processing setup including the codebase used, we also (b) help alleviate the costs of dataset curation, both in time and in compute, for model creators by publicly releasing our dataset with the community.
### Discussion of Biases
Efforts were made to minimize the amount of NSFW and toxic content present in the dataset by employing filtering on the URL level. However, there are still a significant number of documents present in the final dataset that could be considered toxic or contain harmful content. As π· FineWeb was sourced from the web as a whole, any harmful biases typically present in it may be reproduced on our dataset.
We deliberately avoided using machine learning filtering methods that define text quality based on the similarity to a βgoldβ source such as wikipedia or toxicity classifiers as these methods have been known to [disproportionately remove content in specific dialects](https://aclanthology.org/D16-1120/) and [overclassify as toxic text related to specific social identities](https://arxiv.org/pdf/2109.07445.pdf), respectively.
### Other Known Limitations
As a consequence of some of the filtering steps applied, it is likely that code content is not prevalent in our dataset. If you are training a model that should also perform code tasks, we recommend you use π· FineWeb with a code dataset, such as [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2). You should also probably consider complementing π· FineWeb with specialized curated sources (such as Wikipedia, for example) as they will likely have better formatting than the wikipedia content included in π· FineWeb (we did not tailor the processing to individual websites).
## Additional Information
### Licensing Information
The dataset is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use).
### Future work
We plan to work on better educational classifier to improve the quality of FineWeb-Edu.
### Citation Information
```
@software{lozhkov2024fineweb-edu,
author = {Lozhkov, Anton and Ben Allal, Loubna and von Werra, Leandro and Wolf, Thomas},
title = {FineWeb-Edu},
month = May,
year = 2024,
url = {https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu}
}
``` |