Datasets:

File size: 6,476 Bytes
ab3b240
 
 
 
 
6d4671f
ab3b240
 
6d4671f
4970c41
ab3b240
 
 
4970c41
 
ab3b240
 
 
 
 
 
 
 
 
304ad61
67f32a4
b06d5f6
 
 
 
 
 
 
 
 
1602fe9
 
 
 
 
 
 
 
 
b06d5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
1602fe9
 
 
 
 
 
 
 
 
b06d5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
1602fe9
 
 
 
 
 
 
 
 
b06d5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
1602fe9
 
 
 
 
 
 
 
 
b06d5f6
 
 
 
 
 
8d0e5e9
 
 
 
 
ab3b240
 
 
 
 
 
 
304ad61
ab3b240
 
 
304ad61
 
ab3b240
 
 
 
 
 
 
 
 
 
 
 
 
84a2f24
ab3b240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a2f24
 
 
b06d5f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
- fi
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
- 1K<n<10K
source_datasets:
- extended|other-OpenSubtitles2016
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
- multi-label-classification
- sentiment-classification
paperswithcode_id: xed
pretty_name: XedEnglishFinnish
dataset_info:
- config_name: en_annotated
  features:
  - name: sentence
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': neutral
          '1': anger
          '2': anticipation
          '3': disgust
          '4': fear
          '5': joy
          '6': sadness
          '7': surprise
          '8': trust
  splits:
  - name: train
    num_bytes: 1018485
    num_examples: 17528
  download_size: 2421235
  dataset_size: 1018485
- config_name: en_neutral
  features:
  - name: sentence
    dtype: string
  - name: labels
    dtype:
      class_label:
        names:
          '0': neutral
          '1': anger
          '2': anticipation
          '3': disgust
          '4': fear
          '5': joy
          '6': sadness
          '7': surprise
          '8': trust
  splits:
  - name: train
    num_bytes: 401129
    num_examples: 9675
  download_size: 2421235
  dataset_size: 401129
- config_name: fi_annotated
  features:
  - name: sentence
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': neutral
          '1': anger
          '2': anticipation
          '3': disgust
          '4': fear
          '5': joy
          '6': sadness
          '7': surprise
          '8': trust
  splits:
  - name: train
    num_bytes: 756224
    num_examples: 14449
  download_size: 2421235
  dataset_size: 756224
- config_name: fi_neutral
  features:
  - name: sentence
    dtype: string
  - name: labels
    dtype:
      class_label:
        names:
          '0': neutral
          '1': anger
          '2': anticipation
          '3': disgust
          '4': fear
          '5': joy
          '6': sadness
          '7': surprise
          '8': trust
  splits:
  - name: train
    num_bytes: 427499
    num_examples: 10794
  download_size: 2421235
  dataset_size: 427499
config_names:
- en_annotated
- en_neutral
- fi_annotated
- fi_neutral
---

# Dataset Card for xed_english_finnish

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:** [Github](https://github.com/Helsinki-NLP/XED)
- **Paper:** [Arxiv](https://arxiv.org/abs/2011.01612)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

This is the XED dataset. The dataset consists of emotion annotated movie subtitles from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel. The original annotations have been sourced for mainly English and Finnish.
For the English data we used Stanford NER (named entity recognition) (Finkel et al., 2005) to replace names and locations with the tags: [PERSON] and [LOCATION] respectively.
For the Finnish data, we replaced names and locations using the Turku NER corpus (Luoma et al., 2020).

### Supported Tasks and Leaderboards

Sentiment Classification, Multilabel Classification, Multilabel Classification, Intent Classification

### Languages

English, Finnish

## Dataset Structure

### Data Instances

```
{ "sentence": "A confession that you hired [PERSON] ... and are responsible for my father's murder."
   "labels": [1, 6]  # anger, sadness
}
```

### Data Fields

- sentence: a line from the dataset
- labels: labels corresponding to the emotion as an integer

Where the number indicates the emotion in ascending alphabetical order: anger:1, anticipation:2, disgust:3, fear:4, joy:5, sadness:6, surprise:7, trust:8, with neutral:0 where applicable.

### Data Splits

For English:
Number of unique data points: 17528 ('en_annotated' config) + 9675 ('en_neutral' config)
Number of emotions: 8 (+neutral)

For Finnish:
Number of unique data points: 14449 ('fi_annotated' config) + 10794 ('fi_neutral' config)
Number of emotions: 8 (+neutral)

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

License: Creative Commons Attribution 4.0 International License (CC-BY)

### Citation Information

@inproceedings{ohman2020xed,
  title={XED: A Multilingual Dataset for Sentiment Analysis and Emotion Detection},
  author={{\"O}hman, Emily and P{\`a}mies, Marc and Kajava, Kaisla and Tiedemann, J{\"o}rg},
  booktitle={The 28th International Conference on Computational Linguistics (COLING 2020)},
  year={2020}
}

### Contributions

Thanks to [@lhoestq](https://github.com/lhoestq), [@harshalmittal4](https://github.com/harshalmittal4) for adding this dataset.