Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 4,400 Bytes
71c3f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import os

import datasets


_DESCRIPTION = """\
A parallel corpus of Ubuntu localization files. Source: https://translations.launchpad.net
244 languages, 23,988 bitexts
total number of files: 30,959
total number of tokens: 29.84M
total number of sentence fragments: 7.73M
"""
_HOMEPAGE_URL = "http://opus.nlpl.eu/Ubuntu.php"
_CITATION = """\
@InProceedings{TIEDEMANN12.463,
  author = {J{\"o}rg Tiedemann},
  title = {Parallel Data, Tools and Interfaces in OPUS},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
"""

_VERSION = "1.0.0"
_BASE_NAME = "Ubuntu.{}.{}"
_BASE_URL = "https://object.pouta.csc.fi/OPUS-Ubuntu/v14.10/moses/{}-{}.txt.zip"
# Please note that only few pairs are shown here. You can use config to generate data for all language pairs
_LANGUAGE_PAIRS = [
    ("as", "bs"),
    ("az", "cs"),
    ("bg", "de"),
    ("br", "es_PR"),
    ("bn", "ga"),
    ("br", "hi"),
    ("br", "la"),
    ("bs", "szl"),
    ("br", "uz"),
    ("br", "yi"),
]


class UbuntuConfig(datasets.BuilderConfig):
    def __init__(self, *args, lang1=None, lang2=None, **kwargs):
        super().__init__(
            *args,
            name=f"{lang1}-{lang2}",
            **kwargs,
        )
        self.lang1 = lang1
        self.lang2 = lang2


class OpusUbuntu(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        UbuntuConfig(
            lang1=lang1,
            lang2=lang2,
            description=f"Translating {lang1} to {lang2} or vice versa",
            version=datasets.Version(_VERSION),
        )
        for lang1, lang2 in _LANGUAGE_PAIRS
    ]
    BUILDER_CONFIG_CLASS = UbuntuConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        def _base_url(lang1, lang2):
            return _BASE_URL.format(lang1, lang2)

        download_url = _base_url(self.config.lang1, self.config.lang2)
        path = dl_manager.download_and_extract(download_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": path},
            )
        ]

    def _generate_examples(self, datapath):
        l1, l2 = self.config.lang1, self.config.lang2
        folder = l1 + "-" + l2
        l1_file = _BASE_NAME.format(folder, l1)
        l2_file = _BASE_NAME.format(folder, l2)
        l1_path = os.path.join(datapath, l1_file)
        l2_path = os.path.join(datapath, l2_file)
        with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
            for sentence_counter, (x, y) in enumerate(zip(f1, f2)):
                x = x.strip()
                y = y.strip()
                result = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "translation": {l1: x, l2: y},
                    },
                )
                yield result