Datasets:

License:
File size: 6,216 Bytes
f70275a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a5834
 
 
 
 
 
 
 
 
 
 
 
f70275a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a5834
 
 
 
 
 
 
 
 
 
 
f70275a
 
 
 
 
f9a5834
f70275a
 
f9a5834
 
 
 
 
f70275a
 
f9a5834
 
 
 
 
 
f70275a
 
 
 
f9a5834
 
 
 
 
 
f70275a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import os

import datasets


_DESCRIPTION = """\
This is a new collection of translated movie subtitles from http://www.opensubtitles.org/.

IMPORTANT: If you use the OpenSubtitle corpus: Please, add a link to http://www.opensubtitles.org/ to your website and to your reports and publications produced with the data!

This is a slightly cleaner version of the subtitle collection using improved sentence alignment and better language checking.

62 languages, 1,782 bitexts
total number of files: 3,735,070
total number of tokens: 22.10G
total number of sentence fragments: 3.35G
"""
_HOMEPAGE_URL = "http://opus.nlpl.eu/OpenSubtitles.php"
_CITATION = """\
P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016)
"""

_VERSION = "2018.0.0"
_BASE_NAME = "OpenSubtitles.{}.{}"
_BASE_URL = "https://object.pouta.csc.fi/OPUS-OpenSubtitles/v2018/moses/{}-{}.txt.zip"

# Please note that only few pairs are shown here. You can use config to generate data for all language pairs
_LANGUAGE_PAIRS = [
    ("bs", "eo"),
    ("fr", "hy"),
    ("da", "ru"),
    ("en", "hi"),
    ("bn", "is"),
]


class OpenSubtitlesConfig(datasets.BuilderConfig):
    def __init__(self, *args, lang1=None, lang2=None, **kwargs):
        super().__init__(
            *args,
            name=f"{lang1}-{lang2}",
            **kwargs,
        )
        self.lang1 = lang1
        self.lang2 = lang2


class OpenSubtitles(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        OpenSubtitlesConfig(
            lang1=lang1,
            lang2=lang2,
            description=f"Translating {lang1} to {lang2} or vice versa",
            version=datasets.Version(_VERSION),
        )
        for lang1, lang2 in _LANGUAGE_PAIRS
    ]
    BUILDER_CONFIG_CLASS = OpenSubtitlesConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "meta": {
                        "year": datasets.Value("uint32"),
                        "imdbId": datasets.Value("uint32"),
                        "subtitleId": {
                            self.config.lang1: datasets.Value("uint32"),
                            self.config.lang2: datasets.Value("uint32"),
                        },
                        "sentenceIds": {
                            self.config.lang1: datasets.Sequence(datasets.Value("uint32")),
                            self.config.lang2: datasets.Sequence(datasets.Value("uint32")),
                        },
                    },
                    "translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        def _base_url(lang1, lang2):
            return _BASE_URL.format(lang1, lang2)

        download_url = _base_url(self.config.lang1, self.config.lang2)
        path = dl_manager.download_and_extract(download_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": path},
            )
        ]

    @classmethod
    def _extract_info(cls, sentence_id):
        # see https://github.com/huggingface/datasets/issues/1844
        # sentence ids have the following format: en/2017/7006210/7050201.xml.gz
        # lang/year/imdb_id/opensubtitles_id.xml.gz
        parts = sentence_id[: -len(".xml.gz")].split("/")
        parts.pop(0)  # remove lang, we do not need it

        # returns year, imdb_id, opensubtitles_id
        return tuple(map(int, parts))

    def _generate_examples(self, datapath):
        l1, l2 = self.config.lang1, self.config.lang2
        folder = l1 + "-" + l2
        l1_file = _BASE_NAME.format(folder, l1)
        l2_file = _BASE_NAME.format(folder, l2)
        ids_file = _BASE_NAME.format(folder, "ids")
        l1_path = os.path.join(datapath, l1_file)
        l2_path = os.path.join(datapath, l2_file)
        ids_path = os.path.join(datapath, ids_file)
        with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2, open(
            ids_path, encoding="utf-8"
        ) as f3:
            for sentence_counter, (x, y, _id) in enumerate(zip(f1, f2, f3)):
                x = x.strip()
                y = y.strip()
                l1_id, l2_id, l1_sid, l2_sid = _id.split("\t")
                year, imdb_id, l1_subtitle_id = self._extract_info(l1_id)
                _, _, l2_subtitle_id = self._extract_info(l2_id)
                l1_sentence_ids = list(map(int, l1_sid.split(" ")))
                l2_sentence_ids = list(map(int, l2_sid.split(" ")))

                result = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "meta": {
                            "year": year,
                            "imdbId": imdb_id,
                            "subtitleId": {l1: l1_subtitle_id, l2: l2_subtitle_id},
                            "sentenceIds": {l1: l1_sentence_ids, l2: l2_sentence_ids},
                        },
                        "translation": {l1: x, l2: y},
                    },
                )
                sentence_counter += 1
                yield result