Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,167 Bytes
cc9a080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Bianet: A parallel news corpus in Turkish, Kurdish and English"""


import os

import datasets


_CITATION = """\
@InProceedings{ATAMAN18.6,
  author = {Duygu Ataman},
  title = {Bianet: A Parallel News Corpus in Turkish, Kurdish and English},
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {may},
  date = {7-12},
  location = {Miyazaki, Japan},
  editor = {Jinhua Du and Mihael Arcan and Qun Liu and Hitoshi Isahara},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {979-10-95546-15-3},
  language = {english}
  }"""

_HOMEPAGE = "http://opus.nlpl.eu/Bianet.php"


_LICENSE = "CC-BY-SA-4.0"

_VALID_LANGUAGE_PAIRS = {
    ("en", "ku"): "http://opus.nlpl.eu/download.php?f=Bianet/v1/moses/en-ku.txt.zip",
    ("en", "tr"): "http://opus.nlpl.eu/download.php?f=Bianet/v1/moses/en-tr.txt.zip",
    ("ku", "tr"): "http://opus.nlpl.eu/download.php?f=Bianet/v1/moses/ku-tr.txt.zip",
}

_VERSION = "1.0.0"

_DESCRIPTION = """\
A parallel news corpus in Turkish, Kurdish and English.
Bianet collects 3,214 Turkish articles with their sentence-aligned Kurdish or English translations from the Bianet online newspaper.
3 languages, 3 bitexts
total number of files: 6
total number of tokens: 2.25M
total number of sentence fragments: 0.14M
"""

_BASE_NAME = "Bianet.{}-{}.{}"


class BianetConfig(datasets.BuilderConfig):
    """BuilderConfig for Bianet: A parallel news corpus in Turkish, Kurdish and English"""

    def __init__(self, language_pair=(None, None), **kwargs):
        """BuilderConfig for Bianet: A parallel news corpus in Turkish, Kurdish and English.
        The first language in `language_pair` should consist of two strings joined by
        an underscore (e.g. "en-tr").
        Args:
          language_pair: pair of languages that will be used for translation.
          **kwargs: keyword arguments forwarded to super.
        """
        name = "%s_to_%s" % (language_pair[0], language_pair[1])

        description = ("Translation dataset from %s to %s or %s to %s.") % (
            language_pair[0],
            language_pair[1],
            language_pair[1],
            language_pair[0],
        )
        super(BianetConfig, self).__init__(
            name=name, description=description, version=datasets.Version(_VERSION, ""), **kwargs
        )

        # Validate language pair.
        assert language_pair in _VALID_LANGUAGE_PAIRS, (
            "Config language pair (%s, " "%s) not supported"
        ) % language_pair

        self.language_pair = language_pair


class Bianet(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        BianetConfig(
            language_pair=pair,
        )
        for pair in _VALID_LANGUAGE_PAIRS.keys()
    ]

    BUILDER_CONFIG_CLASS = BianetConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "translation": datasets.Translation(languages=tuple(self.config.language_pair)),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        download_url = _VALID_LANGUAGE_PAIRS.get(tuple(self.config.language_pair))
        path = dl_manager.download_and_extract(download_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": path},
            )
        ]

    def _generate_examples(self, datapath):
        lang1, lang2 = self.config.language_pair
        lang1_file = _BASE_NAME.format(lang1, lang2, lang1)
        lang2_file = _BASE_NAME.format(lang1, lang2, lang2)
        lang1_path = os.path.join(datapath, lang1_file)
        lang2_path = os.path.join(datapath, lang2_file)

        with open(lang1_path, encoding="utf-8") as f1, open(lang2_path, encoding="utf-8") as f2:
            for sentence_counter, (x, y) in enumerate(zip(f1, f2)):
                x = x.strip()
                y = y.strip()
                result = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "translation": {lang1: x, lang2: y},
                    },
                )
                yield result