File size: 3,367 Bytes
47620ab
 
 
 
 
b0dec8d
47620ab
 
 
 
 
 
 
 
 
 
 
 
939175d
47620ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d0d74
47620ab
 
 
 
 
 
54d0d74
7a5ec2e
47620ab
 
 
 
 
 
 
 
 
 
 
6ff60f7
47620ab
c8f8435
56fd8de
27570d7
83884fc
927f55d
 
47620ab
c8f8435
e2e0f48
2970c73
cccb20f
47620ab
 
939175d
 
 
 
 
 
 
 
 
74315b5
 
7a5ec2e
7ff25ef
939175d
 
ff114f8
 
 
 
 
 
 
 
 
 
7a5ec2e
7ff25ef
54d0d74
cccb20f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

import os

import datasets
import json
import pandas as pd

_CITATION = """\
"""

_DESCRIPTION = """\
    CSAT-QA
"""

_HOMEPAGE = "https://huggingface.co/HAERAE-HUB"

_LICENSE = "Proprietary"

split_names = ["full","WR", "GR", "RCS", "RCSS", "RCH", "LI"]

class CSATQAConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)


class CSATQA(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        CSATQAConfig(
            name=name,
        )
        for name in split_names
    ]

    def _info(self):
        features = datasets.Features(
            {
                "question": datasets.Value("string"),
                "context" : datasets.Value("string"),
                "option#1": datasets.Value("string"),
                "option#2": datasets.Value("string"),
                "option#3": datasets.Value("string"),
                "option#4": datasets.Value("string"),
                "option#5": datasets.Value("string"),
                "gold": datasets.Value("int8"),
                "category": datasets.Value("string"),
                "human_performance": datasets.Value("float32"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_path = dl_manager.download_and_extract("./data/csatqa.json")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": train_path,
                },
            ),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            buffer = []
            for key, row in enumerate(f):
                data = json.loads(row)
                if self.config.name == "full":
                    buffer.append({
                        "question": data["question"],
                        "context" : data["context"],
                        "option#1": data["option#1"],
                        "option#2": data["option#2"],
                        "option#3": data["option#3"],
                        "option#4": data["option#4"],
                        "option#5": data["option#5"],
                        "gold": data["gold"],
                        "category":"N/A",
                        "human_performance":0.0
                    })
                    
                elif data["Category"] == self.config.name:
                    buffer.append({
                        "question": data["question"],
                        "context" : data["context"],
                        "option#1": data["option#1"],
                        "option#2": data["option#2"],
                        "option#3": data["option#3"],
                        "option#4": data["option#4"],
                        "option#5": data["option#5"],
                        "gold": data["gold"],
                        "category": data["Category"],
                        "human_performance": data["Human_Peformance"]
                    })
                
            for idx, dat in enumerate(buffer):
                yield idx,dat