File size: 28,892 Bytes
1ca7b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "578786b8-092a-4de8-9955-4e87da557639",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: peft in /opt/conda/lib/python3.10/site-packages (0.11.1)\n",
      "Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from peft) (1.26.3)\n",
      "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from peft) (23.1)\n",
      "Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from peft) (5.9.0)\n",
      "Requirement already satisfied: pyyaml in /opt/conda/lib/python3.10/site-packages (from peft) (6.0.1)\n",
      "Requirement already satisfied: torch>=1.13.0 in /opt/conda/lib/python3.10/site-packages (from peft) (2.2.0)\n",
      "Requirement already satisfied: transformers in /opt/conda/lib/python3.10/site-packages (from peft) (4.42.3)\n",
      "Requirement already satisfied: tqdm in /opt/conda/lib/python3.10/site-packages (from peft) (4.66.4)\n",
      "Requirement already satisfied: accelerate>=0.21.0 in /opt/conda/lib/python3.10/site-packages (from peft) (0.32.0)\n",
      "Requirement already satisfied: safetensors in /opt/conda/lib/python3.10/site-packages (from peft) (0.4.3)\n",
      "Requirement already satisfied: huggingface-hub>=0.17.0 in /opt/conda/lib/python3.10/site-packages (from peft) (0.23.4)\n",
      "Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (3.13.1)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (2023.12.2)\n",
      "Requirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (2.32.3)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (4.9.0)\n",
      "Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch>=1.13.0->peft) (1.12)\n",
      "Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch>=1.13.0->peft) (3.1)\n",
      "Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch>=1.13.0->peft) (3.1.2)\n",
      "Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers->peft) (2024.5.15)\n",
      "Requirement already satisfied: tokenizers<0.20,>=0.19 in /opt/conda/lib/python3.10/site-packages (from transformers->peft) (0.19.1)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch>=1.13.0->peft) (2.1.3)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (2.0.4)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (3.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (1.26.18)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (2023.11.17)\n",
      "Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch>=1.13.0->peft) (1.3.0)\n",
      "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
      "\u001b[0m"
     ]
    }
   ],
   "source": [
    "#!pip install huggingface_hub torch transformers datasets trl \n",
    "#!pip install flash-attn --no-build-isolation\n",
    "!pip install --upgrade peft"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4a74bec4-4bf0-47be-802a-046073da573e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import logging\n",
    "\n",
    "import datasets\n",
    "from datasets import load_dataset\n",
    "from peft import LoraConfig\n",
    "import torch\n",
    "import transformers\n",
    "from trl import SFTTrainer, SFTConfig\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8a9bc6f8-4a1e-42d8-897d-5225e1b5011a",
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset_id = (\"wikitext\", \"wikitext-103-raw-v1\")\n",
    "dataset_id = \"HuggingFaceH4/ultrachat_200k\"\n",
    "\n",
    "dataset = load_dataset(dataset_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f3b226eb-b159-4533-bd33-2746181a80b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "training_config = {\n",
    "    \"bf16\": True,\n",
    "    \"do_eval\": False,\n",
    "    \"do_train\": True, # defualts to False, not sure where this fits\n",
    "    \"learning_rate\": 5.0e-06,\n",
    "    \"log_level\": \"info\",\n",
    "    \"logging_steps\": 20,\n",
    "    \"logging_strategy\": \"steps\",\n",
    "    \"lr_scheduler_type\": \"cosine\",\n",
    "    \"num_train_epochs\": 1,\n",
    "    \"max_steps\": -1,\n",
    "    \"output_dir\": \"./checkpoint_dir\", # model predictions and checkpoints\n",
    "    \"overwrite_output_dir\": True,\n",
    "    \"per_device_eval_batch_size\": 4,\n",
    "    \"per_device_train_batch_size\": 4,\n",
    "    \"remove_unused_columns\": True,\n",
    "    \"save_steps\": 100,\n",
    "    \"save_total_limit\": 1,\n",
    "    \"seed\": 0,\n",
    "    \"gradient_checkpointing\": True,\n",
    "    \"gradient_checkpointing_kwargs\":{\"use_reentrant\": False},\n",
    "    \"gradient_accumulation_steps\": 1, # number of steps to accumulate before beckprop\n",
    "    \"warmup_ratio\": 0.2,\n",
    "    \"packing\": False,\n",
    "    \"max_seq_length\": 2048,\n",
    "    \"dataset_text_field\": \"text\",\n",
    "    }\n",
    "\n",
    "peft_config = {\n",
    "    \"r\": 16, # default values VV\n",
    "    \"lora_alpha\": 32,\n",
    "    \"lora_dropout\": 0.05,\n",
    "    \"bias\": \"none\",\n",
    "    \"task_type\": \"CAUSAL_LM\",\n",
    "    \"target_modules\": \"all-linear\",\n",
    "    \"modules_to_save\": None,\n",
    "}\n",
    "\n",
    "train_conf = SFTConfig(**training_config)\n",
    "#train_conf = TrainingArguments(**training_config)\n",
    "peft_conf = LoraConfig(**peft_config)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "20c9d834-50fe-4495-b003-7d80495c8439",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "08aed232727444ab814beb2c188090eb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Exception ignored in: <bound method IPythonKernel._clean_thread_parent_frames of <ipykernel.ipkernel.IPythonKernel object at 0x76c288d725c0>>\n",
      "Traceback (most recent call last):\n",
      "  File \"/opt/conda/lib/python3.10/site-packages/ipykernel/ipkernel.py\", line 775, in _clean_thread_parent_frames\n",
      "    def _clean_thread_parent_frames(\n",
      "KeyboardInterrupt: \n",
      "Exception ignored in: <bound method IPythonKernel._clean_thread_parent_frames of <ipykernel.ipkernel.IPythonKernel object at 0x76c288d725c0>>\n",
      "Traceback (most recent call last):\n",
      "  File \"/opt/conda/lib/python3.10/site-packages/ipykernel/ipkernel.py\", line 775, in _clean_thread_parent_frames\n",
      "    def _clean_thread_parent_frames(\n",
      "KeyboardInterrupt: \n",
      "Exception ignored in: <bound method IPythonKernel._clean_thread_parent_frames of <ipykernel.ipkernel.IPythonKernel object at 0x76c288d725c0>>\n",
      "Traceback (most recent call last):\n",
      "  File \"/opt/conda/lib/python3.10/site-packages/ipykernel/ipkernel.py\", line 775, in _clean_thread_parent_frames\n",
      "    def _clean_thread_parent_frames(\n",
      "KeyboardInterrupt: \n",
      "Exception ignored in: <bound method IPythonKernel._clean_thread_parent_frames of <ipykernel.ipkernel.IPythonKernel object at 0x76c288d725c0>>\n",
      "Traceback (most recent call last):\n",
      "  File \"/opt/conda/lib/python3.10/site-packages/ipykernel/ipkernel.py\", line 775, in _clean_thread_parent_frames\n",
      "    def _clean_thread_parent_frames(\n",
      "KeyboardInterrupt: \n"
     ]
    }
   ],
   "source": [
    "checkpoint_path = \"microsoft/Phi-3-mini-128k-instruct\"\n",
    "model_kwargs = dict(\n",
    "    use_cache=False,\n",
    "    trust_remote_code=True,\n",
    "    attn_implementation=\"flash_attention_2\",  # loading the model with flash-attenstion support\n",
    "    torch_dtype=torch.bfloat16,\n",
    "    device_map=\"auto\"\n",
    ")\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)\n",
    "tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, truncation=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "d684252c-2151-4601-8ebb-398bd3a63f00",
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer.model_max_length = 2048\n",
    "#tokenizer.pad_token = tokenizer.unk_token  # use unk rather than eos token to prevent endless generation\n",
    "#tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)\n",
    "tokenizer.padding_side = 'right'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "75869100-99f7-49c7-a9d3-7a3950dd7d72",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "def preproc(examples, tokenizer):\n",
    "    messages = examples['messages']\n",
    "    examples['text'] = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) #, return_dict=True)\n",
    "    return examples\n",
    "\n",
    "train_dataset = dataset['train_sft']\n",
    "test_dataset = dataset['test_sft']\n",
    "\n",
    "train_dataset = train_dataset.map(preproc,\n",
    "                            fn_kwargs={'tokenizer':tokenizer},\n",
    "                            num_proc=24,\n",
    "                            #batched=True,\n",
    "                            remove_columns=list(train_dataset.features)).select(range(1000))\n",
    "\n",
    "test_dataset = test_dataset.map(preproc,\n",
    "                            fn_kwargs={'tokenizer':tokenizer},\n",
    "                            num_proc=24,\n",
    "                            #batched=True,\n",
    "                            remove_columns=list(test_dataset.features))#[10000:]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "56cd1b31-6f7e-4c7d-8524-b12cf94b9c9f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5d79f04152484f9494e389b264fc7176",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/1000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using auto half precision backend\n"
     ]
    }
   ],
   "source": [
    "trainer = SFTTrainer(\n",
    "    model=model,\n",
    "    args=train_conf,\n",
    "    peft_config=peft_conf,\n",
    "    train_dataset=train_dataset,\n",
    "    #eval_dataset=test_dataset,\n",
    "    # max_seq_length=tokenizer.model_max_length,\n",
    "    # dataset_text_field=\"text\",\n",
    "    tokenizer=tokenizer,\n",
    "    # packing=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "d8e6b669-1717-429a-9c43-3c02adb8a3d1",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "***** Running training *****\n",
      "  Num examples = 1,000\n",
      "  Num Epochs = 1\n",
      "  Instantaneous batch size per device = 4\n",
      "  Total train batch size (w. parallel, distributed & accumulation) = 4\n",
      "  Gradient Accumulation steps = 1\n",
      "  Total optimization steps = 250\n",
      "  Number of trainable parameters = 25,165,824\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='4' max='250' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [  4/250 00:04 < 09:17, 0.44 it/s, Epoch 0.01/1]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Step</th>\n",
       "      <th>Training Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[16], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m train_result \u001b[38;5;241m=\u001b[39m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      2\u001b[0m metrics \u001b[38;5;241m=\u001b[39m train_result\u001b[38;5;241m.\u001b[39mmetrics\n\u001b[1;32m      3\u001b[0m trainer\u001b[38;5;241m.\u001b[39msave_state()\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:440\u001b[0m, in \u001b[0;36mSFTTrainer.train\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    437\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mneftune_noise_alpha \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_trainer_supports_neftune:\n\u001b[1;32m    438\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_trl_activate_neftune(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel)\n\u001b[0;32m--> 440\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    442\u001b[0m \u001b[38;5;66;03m# After training we make sure to retrieve back the original forward pass method\u001b[39;00m\n\u001b[1;32m    443\u001b[0m \u001b[38;5;66;03m# for the embedding layer by removing the forward post hook.\u001b[39;00m\n\u001b[1;32m    444\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mneftune_noise_alpha \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_trainer_supports_neftune:\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1932\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m   1930\u001b[0m         hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m   1931\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1932\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1933\u001b[0m \u001b[43m        \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1934\u001b[0m \u001b[43m        \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1935\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1936\u001b[0m \u001b[43m        \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1937\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/transformers/trainer.py:2268\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m   2265\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_step_begin(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[1;32m   2267\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maccelerator\u001b[38;5;241m.\u001b[39maccumulate(model):\n\u001b[0;32m-> 2268\u001b[0m     tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtraining_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2270\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m   2271\u001b[0m     args\u001b[38;5;241m.\u001b[39mlogging_nan_inf_filter\n\u001b[1;32m   2272\u001b[0m     \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_xla_available()\n\u001b[1;32m   2273\u001b[0m     \u001b[38;5;129;01mand\u001b[39;00m (torch\u001b[38;5;241m.\u001b[39misnan(tr_loss_step) \u001b[38;5;129;01mor\u001b[39;00m torch\u001b[38;5;241m.\u001b[39misinf(tr_loss_step))\n\u001b[1;32m   2274\u001b[0m ):\n\u001b[1;32m   2275\u001b[0m     \u001b[38;5;66;03m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[1;32m   2276\u001b[0m     tr_loss \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m tr_loss \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_globalstep_last_logged)\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/transformers/trainer.py:3324\u001b[0m, in \u001b[0;36mTrainer.training_step\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m   3322\u001b[0m         scaled_loss\u001b[38;5;241m.\u001b[39mbackward()\n\u001b[1;32m   3323\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 3324\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maccelerator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43mloss\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   3326\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\u001b[38;5;241m.\u001b[39mdetach() \u001b[38;5;241m/\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mgradient_accumulation_steps\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/accelerate/accelerator.py:2151\u001b[0m, in \u001b[0;36mAccelerator.backward\u001b[0;34m(self, loss, **kwargs)\u001b[0m\n\u001b[1;32m   2149\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlomo_backward(loss, learning_rate)\n\u001b[1;32m   2150\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2151\u001b[0m     \u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/_tensor.py:522\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m    512\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m    513\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m    514\u001b[0m         Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m    515\u001b[0m         (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    520\u001b[0m         inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m    521\u001b[0m     )\n\u001b[0;32m--> 522\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    523\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\n\u001b[1;32m    524\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/autograd/__init__.py:266\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m    261\u001b[0m     retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m    263\u001b[0m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[1;32m    264\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m    265\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 266\u001b[0m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m    267\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    268\u001b[0m \u001b[43m    \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    269\u001b[0m \u001b[43m    \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    270\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    271\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    272\u001b[0m \u001b[43m    \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    273\u001b[0m \u001b[43m    \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    274\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "train_result = trainer.train()\n",
    "metrics = train_result.metrics\n",
    "trainer.save_state()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "4d4207fc-1578-4591-a480-467fd2a5855b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'train_runtime': 506.2204,\n",
       " 'train_samples_per_second': 1.975,\n",
       " 'train_steps_per_second': 0.494,\n",
       " 'total_flos': 4.041582948790272e+16,\n",
       " 'train_loss': 1.1037534561157227,\n",
       " 'epoch': 1.0}"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "metrics"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f92339ec-0448-40d2-9458-6242e35b9bdc",
   "metadata": {},
   "outputs": [],
   "source": [
    "from peft import PeftConfig, PeftModel \n",
    "\n",
    "checkpoint_path = \"microsoft/Phi-3-mini-128k-instruct\"\n",
    "adapter_path = \"./checkpoint_dir/checkpoint-250\"\n",
    "\n",
    "model_kwargs = dict(\n",
    "    use_cache=False,\n",
    "    trust_remote_code=True,\n",
    "    attn_implementation=\"flash_attention_2\",  # loading the model with flash-attenstion support\n",
    "    torch_dtype=torch.bfloat16,\n",
    "    device_map=\"auto\"\n",
    ")\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f0cf458d-8b4f-4ff9-bd60-bbe510416cea",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    }
   ],
   "source": [
    "model = PeftModel.from_pretrained(model, adapter_path)\n",
    "tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "b5ada882-b7d2-46c5-ba5b-54fab2556832",
   "metadata": {},
   "outputs": [],
   "source": [
    "input_text = [\n",
    "    {'role': 'user', 'content': \"Tell me about cats\"},\n",
    "]\n",
    "\n",
    "input = \"Tell me about cats\"\n",
    "\n",
    "input = tokenizer(input, return_tensors='pt')\n",
    "\n",
    "output = model.generate(\n",
    "    input['input_ids'].to('cuda'),\n",
    "    max_length=50,  # Maximum length of the generated text\n",
    "    num_return_sequences=1,  # Number of sequences to generate\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "139e9973-003a-484f-95f8-42428dd436f5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tell me about cats.\n",
      "\n",
      "Chatbot: Cats are fascinating creatures! They are known for their agility, independence, and unique behaviors. They have a keen sense of hearing and can see well in low light\n"
     ]
    }
   ],
   "source": [
    "generated_text = tokenizer.decode(output[0], skip_special_tokens=True)\n",
    "\n",
    "print(generated_text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6dc4ddb3-3cbf-4d6e-9f57-45acb8acbe25",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}