Datasets:

Modalities:
Image
Languages:
English
ArXiv:
License:
File size: 1,672 Bytes
d482319
 
a3f2883
 
 
 
 
 
 
 
 
 
d482319
a3f2883
684e1c4
a3f2883
 
cc64e6b
684e1c4
cc64e6b
a3f2883
 
 
 
8f421e2
 
 
a3f2883
 
 
 
 
684e1c4
a3f2883
029ca7c
14e547a
a3f2883
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
license: mit
task_categories:
- image-classification
language:
- en
tags:
- biology
- medical
pretty_name: HEp-2 Cell
size_categories:
- 10K<n<100K
---

# Dataset card for HEp2
The HEp-2 (Human Epithelial type 2) dataset is a widely used benchmark in the field of medical image analysis, especially for the task of antinuclear antibody (ANA) pattern classification. The dataset contains microscopic images of HEp-2 cells stained with fluorescence, demonstrating multiple patterns of autoantibody binding associated with various autoimmune diseases. The HEp-2 dataset is utilized by researchers and practitioners to develop and evaluate algorithms for automated ANA pattern recognition to aid in the diagnosis of autoimmune diseases. The intricate patterns in this dataset test the robustness of computational models, making it a valuable resource for advancing the understanding of autoimmune diseases and the development of advanced medical image analysis techniques.

## Viewer
<https://www.modelscope.cn/datasets/Genius-Society/HEp2/dataPeview>

## Usage
```python
from datasets import load_dataset

ds = load_dataset("Genius-Society/HEp2", split="train")
labels = ds.features["label"].names
for item in ds:
    print("image: ", item["image"])
    print("label name: " + labels[item["label"]])
```

## Mirror
<https://www.modelscope.cn/datasets/Genius-Society/HEp2>

## References
[1] [Chapter III ‐ Classifying Cell Images Using Deep Learning Models](https://github.com/Genius-Society/medical_image_computing/blob/hep2/README.md)<br>
[2] <a href="https://arxiv.org/pdf/1504.02531v1.pdf">HEp-2 Cell Image Classification with Deep Convolutional Neural Networks</a>