Datasets:
metadata
license: mit
task_categories:
- tabular-regression
tags:
- biology
- genomics
pretty_name: Borzoi Intervals
size_categories:
- 100K<n<1M
borzoi-data
Dataset Summary
This dataset contains the specific genomic intervals used for training, validating, and testing the Borzoi model, a deep learning architecture for predicting functional genomic tracks from DNA sequence. The intervals are provided for both human and mouse genomes. We modified the intervals provided in the original source by extending the input sequence to 524,288 bp to create the full interval that was supplied to the model.
- Publication: Avsec, Ž., et al. "Effective gene expression prediction from sequence by integrating long-range interactions." Nat Methods 18, 1196–1203 (2021).
- Original Source https://github.com/calico/borzoi/tree/main/data
- Genome Builds:
- Human: hg38
- Mouse: mm10
Repository Content
The repository includes two tab-separated values (TSV) files and two Jupyter notebooks:
human_intervals.tsv: 55,497 genomic regions (excluding header).mouse_intervals.tsv: 49,369 genomic regions (excluding header).data_human.ipynb: Code to createhuman_intervals.tsv.data_mouse.ipynb: Code to createmouse_intervals.tsv.
Dataset Structure
Data Fields
Both files follow a standard genomic interval format:
| Column | Type | Description |
|---|---|---|
chrom |
string | Chromosome identifier (e.g., chr18, chr4) |
start |
int | Start coordinate of the interval |
end |
int | End coordinate of the interval |
fold |
string | Fold assignment (fold0-fold7) |
split |
string | Data partition assignment (train, test, or val) |
Statistics
| File | Number of Regions | Genome Build |
|---|---|---|
human_intervals.tsv |
55,497 | hg38 |
mouse_intervals.tsv |
49,369 | mm10 |
Usage
from huggingface_hub import hf_hub_download
import pandas as pd
file_path = hf_hub_download(repo_id="Genentech/borzoi-data", filename="human_intervals.tsv")
df_human = pd.read_csv(file_path, sep='\t')
file_path = hf_hub_download(repo_id="Genentech/borzoi-data", filename="mouse_intervals.tsv")
df_mouse = pd.read_csv(file_path, sep='\t')