Datasets:
File size: 26,937 Bytes
8c32667 bff959e 8c32667 bff959e 8c32667 bff959e 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 3d1d9b6 8c32667 bff959e 8c32667 bff959e 8c32667 bff959e 8c32667 3dbd21f 8c32667 3dbd21f 8c32667 3dbd21f 8c32667 3dbd21f 8c32667 3dbd21f 8c32667 3dbd21f 8c32667 3dbd21f 8c32667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The French Language Understanding Evaluation (FLUE) benchmark."""
import csv
import os
import re
import textwrap
import unicodedata
from shutil import copyfile
from lxml import etree
import datasets
_FLUE_CITATION = """\
@misc{le2019flaubert,
title={FlauBERT: Unsupervised Language Model Pre-training for French},
author={Hang Le and Loïc Vial and Jibril Frej and Vincent Segonne and Maximin Coavoux and Benjamin Lecouteux and Alexandre Allauzen and Benoît Crabbé and Laurent Besacier and Didier Schwab},
year={2019},
eprint={1912.05372},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_FLUE_DESCRIPTION = """\
FLUE is an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.
"""
class FlueConfig(datasets.BuilderConfig):
"""BuilderConfig for FLUE."""
def __init__(
self,
text_features,
label_column,
data_url,
data_dir,
citation,
url,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for FLUE.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(FlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.data_url = data_url
self.data_dir = data_dir
self.citation = citation
self.url = url
self.process_label = process_label
class Flue(datasets.GeneratorBasedBuilder):
"""The French Language Understanding Evaluation (FLUE) benchmark."""
BUILDER_CONFIGS = [
FlueConfig(
name="CLS",
description=textwrap.dedent(
"""\
This is a binary classification task. It consists in classifying Amazon reviews for three product categories:
books, DVD, and music. Each sample contains a review text and the associated rating from 1 to 5 stars. Reviews
rated above 3 is labeled as positive, and those rated less than 3 is labeled as negative. The train and test sets
are balanced, including around 1k positive and 1k negative reviews for a total of 2k reviews in each dataset. Only
the French portion is taken to create the binary text classification task in FLUE and report the accuracy on the test set."""
),
text_features={"text": "text"},
label_classes=["negative", "positive"],
label_column="label",
data_url="https://zenodo.org/record/3251672/files/cls-acl10-unprocessed.tar.gz",
data_dir="",
url="",
citation="",
),
FlueConfig(
name="PAWS-X",
description=textwrap.dedent(
"""\
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki. Only the related dataset for French is taken to perform
the paraphrasing task and report the accuracy on the test set."""
),
text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
data_url="https://storage.googleapis.com/paws/pawsx/x-final.tar.gz",
label_column="label",
data_dir="",
url="https://github.com/google-research-datasets/paws/tree/master/pawsx",
citation=textwrap.dedent(
"""\
@InProceedings{pawsx2019emnlp,
title = {{PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}},
author = {Yang, Yinfei and Zhang, Yuan and Tar, Chris and Baldridge, Jason},
booktitle = {Proc. of EMNLP},
year = {2019}
}"""
),
),
FlueConfig(
name="XNLI",
description=textwrap.dedent(
"""
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
is an evaluation benchmark. Only the related datasets for French is taken to perform the NLI task and report
the accuracy on the test set."""
),
text_features={"premise": "premise", "hypo": "hypo"},
data_url={
"train": "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip",
"dev_test": "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip",
},
label_classes=["contradiction", "entailment", "neutral"],
label_column="label",
data_dir="",
url="https://www.nyu.edu/projects/bowman/xnli/",
citation=textwrap.dedent(
"""\
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}"""
),
),
FlueConfig(
name="WSD-V",
description=textwrap.dedent(
"""
French Verb Sense Disambiguation task."""
),
text_features={
"sentence": "sentence",
"pos_tags": "pos_tags",
"lemmas": "lemmas",
"fine_pos_tags": "fine_pos_tags",
},
data_url="http://www.llf.cnrs.fr/dataset/fse/FSE-1.1-10_12_19.tar.gz",
label_classes=["disambiguate_tokens_ids", "disambiguate_labels"],
label_column="disambiguate_labels",
data_dir="FSE-1.1-191210",
url="http://www.llf.cnrs.fr/dataset/fse/",
citation="",
),
]
def _info(self):
if self.config.name == "CLS" or self.config.name == "XNLI":
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
features[self.config.label_column] = datasets.features.ClassLabel(names=self.config.label_classes)
features["idx"] = datasets.Value("int32")
elif self.config.name == "WSD-V":
features = {
text_feature: datasets.Sequence(datasets.Value("string"))
for text_feature in self.config.text_features.keys()
}
features["fine_pos_tags"] = datasets.Sequence(
datasets.features.ClassLabel(
names=[
"DET",
"P+D",
"CC",
"VS",
"P",
"CS",
"NC",
"NPP",
"ADJWH",
"VINF",
"VPP",
"ADVWH",
"PRO",
"V",
"CLO",
"PREF",
"VPR",
"PROREL",
"ADV",
"PROWH",
"N",
"DETWH",
"ADJ",
"P+PRO",
"ET",
"VIMP",
"CLS",
"PONCT",
"I",
"CLR",
]
)
)
features["pos_tags"] = datasets.Sequence(
datasets.features.ClassLabel(
names=[
"V",
"PREF",
"P+D",
"I",
"A",
"P+PRO",
"PRO",
"P",
"anonyme",
"D",
"C",
"CL",
"ET",
"PONCT",
"ADV",
"N",
]
)
)
features["disambiguate_tokens_ids"] = datasets.Sequence(datasets.Value("int32"))
features["disambiguate_labels"] = datasets.Sequence(datasets.Value("string"))
features["idx"] = datasets.Value("string")
else:
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
features[self.config.label_column] = datasets.Value("int32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_FLUE_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _FLUE_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name == "CLS":
archive = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": ("cls-acl10-unprocessed", "fr"),
"split": "train",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": ("cls-acl10-unprocessed", "fr"),
"split": "test",
"files": dl_manager.iter_archive(archive),
},
),
]
elif self.config.name == "PAWS-X":
archive = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": ("x-final", "fr", "dev_2k.tsv"),
"split": "",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": ("x-final", "fr", "test_2k.tsv"),
"split": "",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": ("x-final", "fr", "translated_train.tsv"),
"split": "",
"files": dl_manager.iter_archive(archive),
},
),
]
elif self.config.name == "XNLI":
data_folder = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(data_folder["dev_test"], "XNLI-1.0", "xnli.dev.tsv"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(data_folder["dev_test"], "XNLI-1.0", "xnli.test.tsv"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(
data_folder["train"], "XNLI-MT-1.0", "multinli", "multinli.train.fr.tsv"
),
"split": "train",
},
),
]
elif self.config.name == "WSD-V":
# TODO(QL): make streamable using iter_archive
data_folder = dl_manager.download_and_extract(self.config.data_url)
self._wsdv_prepare_data(os.path.join(data_folder, self.config.data_dir))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_folder, self.config.data_dir),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(data_folder, self.config.data_dir),
"split": "test",
},
),
]
def _generate_examples(self, data_file, split, files=None):
if self.config.name == "CLS":
for path, f in files:
for category in ["books", "dvd", "music"]:
file_path = "/".join(data_file + (category, split + ".review"))
if path == file_path:
next(f)
id = 0
text = f.read().decode("utf-8")
for id_, line in enumerate(text.split("\n\n")):
if len(line) > 9:
id += 1
review_text, label = self._cls_extractor(line)
yield f"{category}_{id_}", {"idx": id, "text": review_text, "label": label}
elif self.config.name == "PAWS-X":
for path, f in files:
if path == "/".join(data_file):
data = csv.reader((line.decode("utf-8") for line in f), delimiter="\t")
next(data) # skip header
id = 0
for id_, row in enumerate(data):
if len(row) == 4:
id += 1
yield id_, {
"idx": id,
"sentence1": self._cleaner(row[1]),
"sentence2": self._cleaner(row[2]),
"label": int(row[3].strip()),
}
elif self.config.name == "XNLI":
with open(data_file, encoding="utf-8") as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
next(data)
id = 0
for id_, row in enumerate(data):
if split == "train":
id += 1
yield id_, {
"idx": id,
"premise": self._cleaner(row[0]),
"hypo": self._cleaner(row[1]),
"label": row[2].strip().replace("contradictory", "contradiction"),
}
else:
if row[0] == "fr":
id += 1
yield id_, {
"idx": id,
"premise": self._cleaner(row[6]),
"hypo": self._cleaner(row[7]),
"label": row[1].strip(), # the label is already "contradiction" in the dev/test
}
elif self.config.name == "WSD-V":
wsd_rdr = WSDDatasetReader()
for inst in wsd_rdr.read_from_data_dirs([os.path.join(data_file, split)]):
yield inst[0], {
"idx": inst[0],
"sentence": inst[1],
"pos_tags": inst[2],
"lemmas": inst[3],
"fine_pos_tags": inst[4],
"disambiguate_tokens_ids": inst[5],
"disambiguate_labels": inst[6],
}
def _cls_extractor(self, line):
"""
Extract review and label for CLS dataset
from: https://github.com/getalp/Flaubert/blob/master/flue/extract_split_cls.py
"""
m = re.search(r"(?<=<rating>)\d+.\d+(?=<\/rating>)", line)
label = "positive" if int(float(m.group(0))) > 3 else "negative" # rating == 3 are already removed
category = re.search(r"(?<=<category>)\w+(?=<\/category>)", line)
if category == "dvd":
m = re.search(r"(?<=\/url><text>)(.|\n|\t|\f)+(?=\<\/title><summary>)", line)
else:
m = re.search(r"(?<=\/url><text>)(.|\n|\t|\f)+(?=\<\/text><title>)", line)
review_text = m.group(0)
return self._cleaner(review_text), label
def _convert_to_unicode(self, text):
"""
Converts `text` to Unicode (if it's not already), assuming UTF-8 input.
from: https://github.com/getalp/Flaubert/blob/master/tools/clean_text.py
"""
def ensure_text(s, encoding="utf-8", errors="strict"):
if isinstance(s, bytes):
return s.decode(encoding, errors)
elif isinstance(s, str):
return s
else:
raise TypeError("not expecting type '%s'" % type(s))
return ensure_text(text, encoding="utf-8", errors="ignore")
def _cleaner(self, text):
"""
Clean up an input text
from: https://github.com/getalp/Flaubert/blob/master/tools/clean_text.py
"""
# Convert and normalize the unicode underlying representation
text = self._convert_to_unicode(text)
text = unicodedata.normalize("NFC", text)
# Normalize whitespace characters and remove carriage return
remap = {ord("\f"): " ", ord("\r"): "", ord("\n"): "", ord("\t"): ""}
text = text.translate(remap)
# Normalize URL links
pattern = re.compile(r"(?:www|http)\S+|<\S+|\w+\/*>")
text = re.sub(pattern, "", text)
# remove multiple spaces in text
pattern = re.compile(r"( ){2,}")
text = re.sub(pattern, r" ", text)
return text
def _wsdv_prepare_data(self, dirpath):
"""Get data paths from FSE dir"""
paths = {}
for f in os.listdir(dirpath):
if f.startswith("FSE"):
data = "test"
else:
data = "train"
paths["_".join((data, f))] = os.path.join(dirpath, f)
test_dirpath = os.path.join(dirpath, "test")
os.makedirs(test_dirpath, exist_ok=True)
train_dirpath = os.path.join(dirpath, "train")
os.makedirs(train_dirpath, exist_ok=True)
# copy FSE file to new test directory
for k, v in paths.items():
data = k.split("_")[0]
filename = k.split("_")[1]
copyfile(v, os.path.join(dirpath, data, filename))
# The WSDDatasetReader classes come from https://github.com/getalp/Flaubert/blob/master/flue/wsd/verbs/modules/dataset.py
class WSDDatasetReader:
"""Class to read a WSD data directory. The directory should contain .data.xml and .gold.key.txt files"""
def get_data_paths(self, indir):
"""Get file paths from WSD dir"""
xml_fpath, gold_fpath = None, None
for f in os.listdir(indir):
if f.endswith(".data.xml"):
xml_fpath = os.path.join(indir, f)
if f.endswith(".gold.key.txt"):
gold_fpath = os.path.join(indir, f)
return xml_fpath, gold_fpath
def read_gold(self, infile):
"""Read .gold.key.txt and return data as dict.
:param infile: fpath to .gold.key.txt file
:type infile: str
:return: return data into dict format : {str(instance_id): set(label)}
:rtype: dict
"""
return {
line.split()[0]: tuple(line.rstrip("\n").split()[1:])
for line in open(infile, encoding="utf-8").readlines()
}
def read_from_data_dirs(self, data_dirs):
"""Read WSD data and return as WSDDataset"""
for d in data_dirs:
xml_fpath, gold_fpath = self.get_data_paths(d)
# read gold file
id2gold = self.read_gold(gold_fpath)
sentences = self.read_sentences(d)
# Parse xml
tree = etree.parse(xml_fpath)
corpus = tree.getroot()
# process data
# iterate over document
for text in corpus:
# iterates over sentences
for sentence in text:
sent_id = sentence.get("id") # sentence id
sent = next(sentences) # get sentence
pos_tags = []
lemmas = []
fine_pos_tags = []
disambiguate_tokens_ids = []
disambiguate_labels = []
tok_idx = 0
# iterate over tokens
for tok in sentence:
lemma, pos, fine_pos_tag = tok.get("lemma"), tok.get("pos"), tok.get("fine_pos")
pos_tags.append(pos)
lemmas.append(lemma)
fine_pos_tags.append(fine_pos_tag)
wf = tok.text
subtokens = wf.split(" ")
# add sense annotated token
if tok.tag == "instance":
id = tok.get("id")
target_labels = id2gold[id]
target_first_label = target_labels[0]
# We focus on the head of the target mwe instance
if pos == "VERB":
tgt_idx = tok_idx # head is mostly the first token as most mwe verb targets are phrasal verbs (i.g lift up)
else:
tgt_idx = (
tok_idx + len(subtokens) - 1
) # other pos head are generally the last token of the mwe (i.g European Union)
disambiguate_tokens_ids.append(tgt_idx)
disambiguate_labels.append(target_first_label)
tok_idx += 1
yield (
sent_id,
sent,
pos_tags,
lemmas,
fine_pos_tags,
disambiguate_tokens_ids,
disambiguate_labels,
)
def read_sentences(self, data_dir, keep_mwe=True):
"""Read sentences from WSD data"""
xml_fpath, _ = self.get_data_paths(data_dir)
return self.read_sentences_from_xml(xml_fpath, keep_mwe=keep_mwe)
def read_sentences_from_xml(self, infile, keep_mwe=False):
"""Read sentences from xml file"""
# Parse xml
tree = etree.parse(infile)
corpus = tree.getroot()
for text in corpus:
for sentence in text:
if keep_mwe:
sent = [tok.text.replace(" ", "_") for tok in sentence]
else:
sent = [subtok for tok in sentence for subtok in tok.text.split(" ")]
yield sent
def read_target_keys(self, infile):
"""Read target keys"""
return [x.rstrip("\n") for x in open(infile, encoding="utf-8").readlines()]
|