Datasets:
File size: 11,585 Bytes
8c32667 dd09f94 8c32667 dd09f94 8c32667 ec1407a 1cc383c 3a412ae 42289fe 1cc383c 42289fe d1743c1 42289fe d1743c1 42289fe 1cc383c 42289fe d1743c1 42289fe d1743c1 42289fe 28f21e0 8c32667 76b3800 8c32667 76b3800 8c32667 089fab5 8c32667 089fab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
---
annotations_creators:
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
language:
- fr
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
- semantic-similarity-classification
- sentiment-classification
pretty_name: FLUE
tags:
- Word Sense Disambiguation for Verbs
dataset_info:
- config_name: CLS
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative
'1': positive
- name: idx
dtype: int32
splits:
- name: train
num_bytes: 3853279
num_examples: 5997
- name: test
num_bytes: 3852344
num_examples: 5999
download_size: 314687066
dataset_size: 7705623
- config_name: PAWS-X
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 522013
num_examples: 1988
- name: test
num_bytes: 526953
num_examples: 2000
- name: train
num_bytes: 13096677
num_examples: 49399
download_size: 30282057
dataset_size: 14145643
- config_name: XNLI
features:
- name: premise
dtype: string
- name: hypo
dtype: string
- name: label
dtype:
class_label:
names:
'0': contradiction
'1': entailment
'2': neutral
- name: idx
dtype: int32
splits:
- name: validation
num_bytes: 520022
num_examples: 2490
- name: test
num_bytes: 1048999
num_examples: 5010
- name: train
num_bytes: 87373154
num_examples: 392702
download_size: 483963712
dataset_size: 88942175
- config_name: WSD-V
features:
- name: sentence
sequence: string
- name: pos_tags
sequence: string
- name: lemmas
sequence: string
- name: fine_pos_tags
sequence: string
- name: disambiguate_tokens_ids
sequence: int32
- name: disambiguate_labels
sequence: string
- name: idx
dtype: string
splits:
- name: train
num_bytes: 206869215
num_examples: 269821
- name: test
num_bytes: 2722232
num_examples: 3121
download_size: 38303600
dataset_size: 209591447
config_names:
- CLS
- PAWS-X
- WSD-V
- XNLI
---
# Dataset Card for FLUE
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [homepage](https://github.com/getalp/Flaubert/tree/master/flue)
- **Repository:**[github](https://github.com/getalp/Flaubert/tree/master/flue)
- **Paper:**[paper](https://arxiv.org/abs/1912.05372)
- **Leaderboard:**[leaderboard](https://github.com/getalp/Flaubert/tree/master/flue/leaderboard)
- **Point of Contact:**[Hang Le](thi-phuong-hang.le@univ-grenoble-alpes.fr)
### Dataset Summary
FLUE is an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language. The tasks and data are obtained from existing works, please refer to our Flaubert paper for a complete list of references.
### Supported Tasks and Leaderboards
The supported tasks are: Text Classification, Paraphrasing, Natural Language Inference, Constituency Parsing, Dependency Parsing, Verb Sense Disambiguation and Noun Sense Disambiguation
### Languages
The datasets are all in French.
## Dataset Structure
### Text Classification (CLS)
This is a binary classification task. It consists in classifying Amazon reviews for three product categories: books, DVD, and music. Each sample contains a review text and the associated rating from 1 to 5 stars. Reviews rated above 3 is labeled as positive, and those rated less than 3 is labeled as negative.
#### Data Instances
An instance looks like:
```
{
'idx': 1,
'label': 0,
'text': 'Bilan plus que mitigé pour cet album fourre-tout qui mêle quelques bonnes idées (les parodies d\'oeuvres d\'art) et des scènetes qui ne font que faire écho paresseusement aux précédents albums. Uderzo n\'a pas pris de risque pour cet album, mais, au vu des précédents, on se dit que c\'est peut-être un moindre mal ... L\'album semble n\'avoir été fait que pour permettre à Uderzo de rappeler avec une insistance suspecte qu\'il est bien l\'un des créateurs d\'Astérix (comme lorsqu\'il se met en scène lui même dans la BD) et de traiter ses critiques d\' "imbéciles" dans une préface un rien aigrie signée "Astérix". Préface dans laquelle Uderzo feint de croire que ce qu\'on lui reproche est d\'avoir fait survivre Asterix à la disparition de Goscinny (reproche naturellement démenti par la fidélité des lecteurs - démonstration imparable !). On aurait tant aimé qu\'Uderzo accepte de s\'entourer d\'un scénariste compétent et respectueux de l\'esprit Goscinnien (cela doit se trouver !) et nous propose des albums plus ambitieux ...'
}
```
#### Data Fields
The dataset is composed of two fields:
- **text**: the field that represents the text to classify.
- **label**: the sentiment represented by the text, here **positive** or **negative**.
#### Data Splits
The train and test sets are balanced, including around 1k positive and 1k negative reviews for a total of 2k reviews in each dataset. We take the French portion to create the binary text classification task in FLUE and report the accuracy on the test set.
### Paraphrasing (PAWS-X)
The task consists in identifying whether the two sentences in a pair are semantically equivalent or not.
#### Data Instances
An instance looks like:
```
{
'idx': 1,
'label': 0,
'sentence1': "À Paris, en octobre 1560, il rencontra secrètement l'ambassadeur d'Angleterre, Nicolas Throckmorton, lui demandant un passeport pour retourner en Angleterre en passant par l'Écosse.",
'sentence2': "En octobre 1560, il rencontra secrètement l'ambassadeur d'Angleterre, Nicolas Throckmorton, à Paris, et lui demanda un passeport pour retourner en Écosse par l'Angleterre."
}
```
#### Data Fields
The dataset is compososed of three fields:
- **sentence1**: The first sentence of an example
- **sentence2**: The second sentence of an example
- **lalel**: **0** if the two sentences are not paraphrasing each other, **1** otherwise.
#### Data Splits
The train set includes 49.4k examples, the dev and test sets each comprises nearly 2k examples. We take the related datasets for French to perform the paraphrasing task and report the accuracy on the test set.
### Natural Language Inference (XNLI)
The Natural Language Inference (NLI) task, also known as recognizing textual entailment (RTE), is to determine whether a premise entails, contradicts or neither entails nor contradicts a hypothesis. We take the French part of the XNLI corpus to form the development and test sets for the NLI task in FLUE.
#### Data Instances
An instance looks like:
```
{
'idx': 1,
'label': 2,
'hypo': 'Le produit et la géographie sont ce qui fait travailler la crème de la crème .',
'premise': "L' écrémage conceptuel de la crème a deux dimensions fondamentales : le produit et la géographie ."
}
```
#### Data Fields
The dataset is composed of three fields:
- **premise**: Premise sentence.
- **hypo**: Hypothesis sentence.
- **label**: **contradiction** if the two sentences are contradictory, **entailment** if the two sentences entails, **neutral** if they neither entails or contradict each other.
#### Data Splits
The train set includes 392.7k examples, the dev and test sets comprises 2.5k and 5k examples respectively. We take the related datasets for French to perform the NLI task and report the accuracy on the test set.
### Word Sense Disambiguation for Verbs (WSD-V)
The FrenchSemEval (FSE) dataset aims to evaluate the Word Sense Disambiguation for Verbs task for the French language. Extracted from Wiktionary.
#### Data Instances
An instance looks like:
```
{
'idx': 'd000.s001',
'sentence': ['"', 'Ce', 'ne', 'fut', 'pas', 'une', 'révolution', '2.0', ',', 'ce', 'fut', 'une', 'révolution', 'de', 'rue', '.'],
'fine_pos_tags': [27, 26, 18, 13, 18, 0, 6, 22, 27, 26, 13, 0, 6, 4, 6, 27],
'lemmas': ['"', 'ce', 'ne', 'être', 'pas', 'un', 'révolution', '2.0', ',', 'ce', 'être', 'un', 'révolution', 'de', 'rue', '.'],
'pos_tags': [13, 11, 14, 0, 14, 9, 15, 4, 13, 11, 0, 9, 15, 7, 15, 13],
'disambiguate_labels': ['__ws_1_2.0__adj__1'],
'disambiguate_tokens_ids': [7],
}
```
#### Data Fields
The dataset is composed of six fields:
- **sentence**: The sentence to process split in tokens.
- **pos_tags**: The corresponding POS tags for each tokens.
- **lemmas**: The corresponding lemma for each tokens.
- **fine_pos_tags**: Fined (more specific) POS tags for each tokens.
- **disambiguate_tokens_ids**: The ID of the token in the sentence to disambiguate.
- **disambiguate_labels**: The label in the form of **sentenceID __ws_sentence-number_token__pos__number-of-time-the-token-appeared-across-all-the-sentences** (i.e. **d000.s404.t000 __ws_2_agir__verb__1**).
#### Data Splits
The train set includes 269821 examples, the test set includes 3121 examples.
## Considerations for Using the Data
### Social Impact of Dataset
The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.
## Additional Information
### Licensing Information
The licenses are:
- The licensing status of the data, especially the news source text, is unknown for CLS
- *The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated. The dataset is provided "AS IS" without any warranty, express or implied. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.* for PAWS-X
- CC BY-NC 4.0 for XNLI
- The licensing status of the data, especially the news source text, is unknown for Verb Sense Disambiguation
### Citation Information
```
@misc{le2019flaubert,
title={FlauBERT: Unsupervised Language Model Pre-training for French},
author={Hang Le and Loïc Vial and Jibril Frej and Vincent Segonne and Maximin Coavoux and Benjamin Lecouteux and Alexandre Allauzen and Benoît Crabbé and Laurent Besacier and Didier Schwab},
year={2019},
eprint={1912.05372},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@jplu](https://github.com/jplu) for adding this dataset. |