Datasets:
GEM
/

Languages:
English
License:
File size: 5,355 Bytes
ce90d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d678c
ce90d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d678c
ce90d54
ee69481
ce90d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073aa7
a985f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import json
import os

import datasets

_CITATION = """\
@article{Narayan2018DontGM,
  title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization},
  author={Shashi Narayan and Shay B. Cohen and Mirella Lapata},
  journal={ArXiv},
  year={2018},
  volume={abs/1808.08745}
}
"""

_DESCRIPTION = """\
This is the XSUM subset of the GEM benchmark.
"""
_URLs = {
	"xsum": {
            "data": "http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz",
            "splits": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_xsum_confidence_0.8.json",
            "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/xsum.zip",
    	},
    }

_XSUM_REMOVE_LINES = set(
    [
        "Share this with\n",
        "Email\n",
        "Facebook\n",
        "Messenger\n",
        "Twitter\n",
        "Pinterest\n",
        "WhatsApp\n",
        "Linkedin\n",
        "LinkedIn\n",
        "Copy this link\n",
        "These are external links and will open in a new window\n",
    ]
)

class Xsum(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="xsum",
            version=datasets.Version("1.0.0"),
            description="",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
       	    features = datasets.Features(
                {
                    "gem_id": datasets.Value("string"),
                    "gem_parent_id": datasets.Value("string"),
                    "xsum_id": datasets.Value("string"),
                    "document": datasets.Value("string"),
                    "target": datasets.Value("string"),
                    "references": [datasets.Value("string")],
                }     
	    ),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
        challenge_sets = [
            ("challenge_train_sample", "train_xsum_RandomSample500.json"),
            ("challenge_validation_sample", "validation_xsum_RandomSample500.json"),
            ("challenge_test_backtranslation", "test_xsum_BackTranslation500.json"),
            ("challenge_test_bfp_02", "test_xsum_ButterFingersPerturbation_p=0.02_500.json"),
            ("challenge_test_bfp_05", "test_xsum_ButterFingersPerturbation_p=0.05_500.json"),
            ("challenge_test_nopunc", "test_xsum_WithoutPunctuation500.json"),
            ("challenge_test_covid", f"en_test_covid19.jsonl"),  	    
        ]
        return [
            datasets.SplitGenerator(
                name=challenge_split,
                gen_kwargs={
                    "filepath": os.path.join(dl_dir["challenge_set"], "xsum", filename),
                    "split": challenge_split,
                },
            )
            for challenge_split, filename in challenge_sets 	
        ]

    def _generate_examples(self, filepath, split, filepaths=None):
        """Yields examples."""
        if "challenge" in split:
            if "covid" in split:
                with open(filepath, encoding="utf-8") as f:
                    id_ = -1
                    for line in f:
                        data = json.loads(line)
                        id_ += 1
                        yield id_, {
                            "gem_id": f"{self.config.name}-{split}-{id_}",
                            "gem_parent_id": f"{self.config.name}-{split}-{id_}",
                            "xsum_id": data["url"],
                            "document": data["text"],
                            "target": data["summary"],
                            "references": [] if split == "train" else [data["summary"]],
                        }
            else:
                exples = json.load(open(filepath, encoding="utf-8"))
                if isinstance(exples, dict):
                    assert len(exples) == 1, "multiple entries found"
                    exples = list(exples.values())[0]
                for id_, exple in enumerate(exples):
                    exple["gem_parent_id"] = exple["gem_id"]
                    exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
                    yield id_, exple
        else:
            with open(filepath, "r", encoding="utf-8") as f:
                split_ids = json.load(f)
            for id_, i in enumerate(split_ids[split]):
                with open(os.path.join(filepaths, i + ".summary"), "r", encoding="utf-8") as f:
                    text = "".join(
                        [line for line in f.readlines() if line not in _XSUM_REMOVE_LINES and line.strip()]
                    )
                    segs = text.split("[SN]")
                    yield id_, {
                        "gem_id": f"{self.config.name}-{split}-{id_}",
                        "gem_parent_id": f"{self.config.name}-{split}-{id_}",
                        "xsum_id": i,
                        "document": segs[8].strip(),
                        "target": segs[6].strip(),
                        "references": [] if split == "train" else [segs[6].strip()],
                    }