Datasets:
GEM
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 7,333 Bytes
5c61a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
{
  "overview": {
    "where": {
      "has-leaderboard": "no",
      "leaderboard-url": "N/A",
      "leaderboard-description": "N/A",
      "data-url": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-3-2020",
      "website": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-3-2020",
      "paper-url": "https://arxiv.org/pdf/2012.12458.pdf",
      "paper-bibtext": "@article{byrne2020tickettalk,\n  title={TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems},\n  author={Byrne, Bill and Krishnamoorthi, Karthik and Ganesh, Saravanan and Kale, Mihir Sanjay},\n  journal={arXiv preprint arXiv:2012.12458},\n  year={2020}\n}",
      "contact-name": "Karthik Krishnamoorthi",
      "contact-email": "krishnamoorthi@google.com"
    },
    "languages": {
      "is-multilingual": "no",
      "license": "cc-by-4.0: Creative Commons Attribution 4.0 International",
      "task-other": "N/A",
      "language-names": [
        "English"
      ],
      "intended-use": "Dialogues",
      "license-other": "N/A",
      "task": "Dialog Response Generation",
      "communicative": "a movie ticketing dialog dataset with 23,789 annotated conversations. ",
      "language-dialects": "NA",
      "language-speakers": "NA"
    },
    "credit": {
      "organization-type": [
        "other"
      ],
      "organization-names": "NA",
      "creators": "Google researchers",
      "funding": "Google",
      "gem-added-by": "Tosin Adewumi (Lule\u00e5 University of Technology)"
    },
    "structure": {
      "data-fields": "gem_id\n0\n1\n2\nid",
      "structure-description": "NA",
      "structure-labels": "NA",
      "structure-example": "GEM-TASKMASTER-TEST-0,0,\"<U>correct<C><U>i'll love to see a movie tonight<A>Sure. What movie would you like to see?<U>i havn't decided yet.can you help with any?<A>No problem. Can you tell me what city you\u00c3\u00a2\u00c2\u0080\u00c2\u0099re in?<U>in currently in oak valley,arkansas.<PN>find_movies<PAN>location<PAV>Oak Valley, Arkansas<PR>find_movies<PRAN>name.movie<PRAV>No Time To Die<PRAV>Emma<A>Ok. There are a couple of popular films out in your area: No Time To Die and Emma. Do either of those sound interesting?<U>i'm quite familiar with no time to die but tell me more about emma.<PN>get_movie_attribute<PAN>attribute<PAV>description.plot<PAN>name.movie<PAV>Emma<PR>get_movie_attribute<PRAN>description.plot<PRAV>In this adaptation of Jane Austen's classic novel, pretty socialite Emma Woodhouse, played by Gwyneth Paltrow, entertains herself by playing matchmaker for those around her<A>OK. Here\u00c3\u00a2\u00c2\u0080\u00c2\u0099s the description of Emma: In this adaptation of Jane Austen's classic novel, pretty socialite Emma Woodhouse, played by Gwyneth Paltrow, entertains herself by playing matchmaker for those around her.<U>hum i love that description,i'll love to book two tickets to emma<PN>find_theaters<PAN>location<PAV>Oak Valley, Arkansas<PAN>name.movie<PAV>Emma<PR>find_theaters<PRAN>name.theater<PRAV>AMC Mercado 24<PN>find_showtimes<PAN>date.showing<PAV>tonight<PAN>name.movie<PAV>Emma<PAN>name.theater<PAV>AMC Mercado 24<PR>find_showtimes<PRAN>time.showing<PRAV>5:00pm<PRAV>7:10pm<PRAV>9:45pm<A>OK. Emma is playing at AMC Mercado 24 today at 5:00pm, 7:10pm, and 9:45pm. Which time would you like?<U>7:10pm is fine<A>All right. Let me confirm that you\u00c3\u00a2\u00c2\u0080\u00c2\u0099d like two tickets for Emma at AMC Mercado 24 tonight at 7:10pm. Is that all correct?\",[A]Is it OK to go ahead and purchase these tickets?,dlg-32b67f97-6fcb-4135-b0bc-ac6aa248b889",
      "structure-splits": "train\ndev\ntest",
      "structure-splits-criteria": "NA",
      "structure-outlier": "NA"
    }
  },
  "curation": {
    "original": {
      "is-aggregated": "no",
      "aggregated-sources": "N/A",
      "rationale": "NA",
      "communicative": "a movie ticketing dialog dataset with 23,789 annotated conversations."
    },
    "language": {
      "found": [],
      "crowdsourced": [
        "Participatory experiment"
      ],
      "created": "N/A",
      "machine-generated": "N/A",
      "validated": "not validated",
      "is-filtered": "not filtered",
      "filtered-criteria": "N/A",
      "obtained": [
        "Crowdsourced"
      ],
      "producers-description": "NA",
      "topics": "Ticketing",
      "pre-processed": "N/A"
    },
    "annotations": {
      "origin": "none",
      "rater-number": "N/A",
      "rater-qualifications": "N/A",
      "rater-training-num": "N/A",
      "rater-test-num": "N/A",
      "rater-annotation-service-bool": "no",
      "rater-annotation-service": [],
      "values": "N/A",
      "quality-control": [],
      "quality-control-details": "N/A"
    },
    "consent": {
      "has-consent": "no",
      "consent-policy": "N/A",
      "consent-other": "N/A",
      "no-consent-justification": "NA"
    },
    "pii": {
      "has-pii": "no PII",
      "no-pii-justification": "It's based on ticketing without personal information",
      "is-pii-identified": "N/A",
      "pii-identified-method": "N/A",
      "is-pii-replaced": "N/A",
      "pii-replaced-method": "N/A",
      "pii-categories": []
    },
    "maintenance": {
      "has-maintenance": "no",
      "description": "N/A",
      "contact": "N/A",
      "contestation-mechanism": "N/A",
      "contestation-link": "N/A",
      "contestation-description": "N/A"
    }
  },
  "gem": {
    "rationale": {
      "sole-task-dataset": "yes",
      "distinction-description": "NA",
      "contribution": "Dialogue generation that makes sense",
      "sole-language-task-dataset": "no",
      "model-ability": "NA"
    },
    "curation": {
      "has-additional-curation": "yes",
      "modification-types": [
        "other"
      ],
      "modification-description": "gem_id field was added to the 3 data splits",
      "has-additional-splits": "no",
      "additional-splits-description": "N/A",
      "additional-splits-capacicites": "N/A"
    },
    "starting": {
      "research-pointers": "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-3-2020",
      "technical-terms": "NA"
    }
  },
  "results": {
    "results": {
      "other-metrics-definitions": "N/A",
      "has-previous-results": "yes",
      "current-evaluation": "NA",
      "previous-results": "NA",
      "model-abilities": "BLEU: 60",
      "metrics": [
        "BLEU"
      ],
      "original-evaluation": "automatic evaluation"
    }
  },
  "considerations": {
    "pii": {
      "risks-description": "NA"
    },
    "licenses": {
      "dataset-restrictions-other": "N/A",
      "data-copyright-other": "N/A",
      "dataset-restrictions": [
        "open license - commercial use allowed"
      ],
      "data-copyright": [
        "public domain"
      ]
    },
    "limitations": {
      "data-technical-limitations": "NA",
      "data-unsuited-applications": "NA",
      "data-discouraged-use": "NA"
    }
  },
  "context": {
    "previous": {
      "is-deployed": "no",
      "described-risks": "N/A",
      "changes-from-observation": "N/A"
    },
    "underserved": {
      "helps-underserved": "no",
      "underserved-description": "N/A"
    },
    "biases": {
      "has-biases": "unsure",
      "bias-analyses": "N/A",
      "speaker-distibution": "NA"
    }
  }
}