File size: 6,723 Bytes
6078f55 1b06c77 6078f55 1b06c77 6078f55 1b06c77 6078f55 d713b85 6078f55 d713b85 6078f55 1b06c77 6078f55 1b06c77 6078f55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import json
import os
import datasets
_CITATION = """\
@inproceedings{sun-etal-2021-d2s,
title = "{D}2{S}: Document-to-Slide Generation Via Query-Based Text Summarization",
author = "Sun, Edward and
Hou, Yufang and
Wang, Dakuo and
Zhang, Yunfeng and
Wang, Nancy X. R.",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = June,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.111",
doi = "10.18653/v1/2021.naacl-main.111",
pages = "1405--1418",
}
"""
_DESCRIPTION = """\
SciDuet is the first publicaly available dataset for the challenging task of document2slides generation,
The dataset integrated into GEM is the ACL portion of the whole dataset described in "https://aclanthology.org/2021.naacl-main.111.pdf".
It contains the full Dev and Test sets, and a portion of the Train dataset.
We additionally create a challenge dataset in which the slide titles do not match with the
section headers of the corresponding paper.
Note that although we cannot release the whole training dataset due to copyright issues, researchers can still
use our released data procurement code from https://github.com/IBM/document2slides
to generate the training dataset from the online ICML/NeurIPS anthologies.
In the released dataset, the original papers and slides (both are in PDF format) are carefully processed by a combination of PDF/Image processing tookits.
The text contents from multiple slides that correspond to the same slide title are mreged.
"""
class SciDuetConfig(datasets.BuilderConfig):
"""BuilderConfig for SciDuet."""
def __init__(self, **kwargs):
"""BuilderConfig for SciDuet.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SciDuetConfig, self).__init__(**kwargs)
class SciDuet(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# BUILDER_CONFIGS = [
# SciDuetConfig(name="gem_data_split", version=VERSION_1, description="SciDuet - GEM version 1"),
# ]
#
# DEFAULT_CONFIG_NAME = "gem_data_split"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"gem_id": datasets.Value("string"),
"paper_id": datasets.Value("string"),
"paper_title": datasets.Value("string"),
"paper_abstract": datasets.Value("string"),
"paper_content": datasets.features.Sequence({
"paper_content_id": datasets.Value("int32"),
"paper_content_text": datasets.Value("string"),
}),
"paper_headers": datasets.features.Sequence({
"paper_header_number": datasets.Value("string"),
"paper_header_content": datasets.Value("string"),
}),
"slide_id": datasets.Value("string"),
"slide_title": datasets.Value("string"),
"slide_content_text": datasets.Value("string"),
}
),
supervised_keys=None,
license="Apache License 2.0",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
_URL = "https://huggingface.co/datasets/GEM/SciDuet/"
_URLs = {
"train": "train.json",
"validation": "validation.json",
"test": "test.json",
"challenge_set": "challenge_woSectionHeader.json",
}
downloaded_files = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["validation"],
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"],
"split": "test",
},
),
] + [
datasets.SplitGenerator(
name="challenge_woSectionHeader",
gen_kwargs={
"filepath": downloaded_files["challenge_set"],
"split": "challenge_woSectionHeader",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
data = json.load(f)["data"]
for i in data:
gem_id = data[i]["gem_id"]
paper_id = data[i]["paper_id"]
paper_title = data[i]["paper_title"]
paper_abstract = data[i]["paper"]["abstract"]
paper_content_ids = [text["id"] for text in data[i]["paper"]["text"]]
paper_content_texts = [text["string"] for text in data[i]["paper"]["text"]]
paper_header_numbers = [header["n"] for header in data[i]["paper"]["headers"]]
paper_header_contents = [header["section"] for header in data[i]["paper"]["headers"]]
for j in data[i]["slides"]:
id_ = gem_id + "#" + "paper-" + paper_id + "#" + "slide-" + str(j)
slide_title = data[i]["slides"][j]["title"]
slide_content_text = '\n'.join(data[i]["slides"][j]["text"])
yield id_, {
"gem_id": gem_id,
"paper_id": paper_id,
"paper_title": paper_title,
"paper_abstract": paper_abstract,
"paper_content": {"paper_content_id":paper_content_ids, "paper_content_text":paper_content_texts},
"paper_header": {"paper_header_number": paper_header_numbers, "paper_header_content": paper_header_contents},
"slide_title": slide_title,
"slide_content_text": slide_content_text,
}
|