File size: 14,989 Bytes
9bea7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import random
import argparse
from pathlib import Path
import json
import itertools
import time
from collections import defaultdict

import torch
import torch.nn.functional as F
import numpy as np
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection

from ip_adapter.ip_adapter_qformer import ImageProjModel, TextProjModel
from ip_adapter.utils import is_torch2_available
if is_torch2_available():
    from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
else:
    from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor

from diffusers.pipelines.blip_diffusion import Blip2QFormerModel, BlipImageProcessor

from diffusers import StableDiffusionXLPipeline
from ip_adapter import IPAdapterXLQFormer6

from advanced_categories_v4_fix import tag_augmentation, SUBJECTS, KEYWORDS


from torch.utils.data import WeightedRandomSampler

from tqdm import tqdm

from dist_utils import init_dist

import itertools
import logging
import math
from collections import defaultdict
from typing import Optional
from torch.utils.data.sampler import Sampler
from torch import distributed as dist

logger = logging.getLogger(__name__)

# Dataset
class MyDatasetv2(torch.utils.data.Dataset):

    def __init__(self, json_file_list, image_root_path_list, tokenizer, tokenizer_2, size=512, layout_w=2, layout_h=2, center_crop=True, t_drop_rate=0.05, i_drop_rate=0.05, ti_drop_rate=0.05, max_ref_attrs=3):
        super().__init__()

        self.tokenizer = tokenizer
        self.tokenizer_2 = tokenizer_2
        self.size = size
        self.center_crop = center_crop
        self.i_drop_rate = i_drop_rate
        self.t_drop_rate = t_drop_rate
        self.ti_drop_rate = ti_drop_rate
        self.max_ref_attrs = max_ref_attrs

        self.layout_w = layout_w
        self.layout_h = layout_h   

        data_filter_all = torch.load('data_filter_full.pth')

        self.filter_data = data_filter_all['filter_data']
        self.subject2descate = data_filter_all['subject2descate']
        self.subject2cate = data_filter_all['subject2cate']
        self.descate2subject = data_filter_all['descate2subject']
        self.descate2cate = data_filter_all['descate2cate']

        assert len(json_file_list) == len(image_root_path_list)

        load_from_cache = False

        if not load_from_cache:
            count_num = 0
            prompt2imgfile = defaultdict(dict)
            attr2imgfile = defaultdict(list)
            all_meta = []
            for i in range(len(json_file_list)):
                json_file = json_file_list[i]
                image_root_path = image_root_path_list[i]
                all_meta, attr2imgfile, prompt2imgfile, count_num = self.load_meta(json_file, image_root_path, all_meta=all_meta, \
                    attr2imgfile=attr2imgfile, prompt2imgfile=prompt2imgfile, count_num=count_num)
                print(json_file, count_num)
                assert count_num == len(all_meta)
            
            self.data = all_meta
            self.attr2imgfile = attr2imgfile
            self.prompt2imgfile = prompt2imgfile
            cache_data = dict()
            cache_data['prompt2imgfile'] = self.prompt2imgfile
            cache_data['data'] = self.data
            cache_data['attr2imgfile'] = self.attr2imgfile
            torch.save(cache_data, 'FiVA_filter_cache_data.pth')
        else:
            cache_data = torch.load('FiVA_filter_cache_data.pth')
            self.prompt2imgfile = cache_data['prompt2imgfile']
            self.data = cache_data['data']
            self.attr2imgfile = cache_data['attr2imgfile']

        self.transform = transforms.Compose([
            transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ])
        self.blip_transform = transforms.Compose([
            transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize([0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711]),
        ])
    

    def load_meta(self, json_file, image_root_path, num_attr=None, all_meta=None, attr2imgfile=None, prompt2imgfile=None, count_num=0):

        meta_data = json.load(open(json_file, 'r'))
        for i in range(len(meta_data)):
            meta = meta_data[i]
            file_name = meta['image_path']
            image_file = os.path.join(image_root_path, file_name)
            meta['image_file'] = image_file
            meta['attr_type'] = []
            meta['attr_val'] = []
            meta['content_text'] = [meta['features']['subject']]
            simple_cate = self.descate2cate[meta['features']['subject']]
            is_keep = False
            for attr in meta['features']['attributes']:
                for key, val in attr.items():
                    prompt_name = key + "@" + val.strip().split('@')[1]
                    if prompt_name in self.filter_data:
                        catmap = self.filter_data[prompt_name]
                        if simple_cate in catmap and len(catmap[simple_cate]) > 0:
                            target_cats = catmap[simple_cate]
                            if prompt_name not in prompt2imgfile:
                                prompt2imgfile[prompt_name] = dict()
                            meta['attr_type'].append(key)
                            meta['attr_val'].append(val)
                            for target_cat in target_cats:
                                if target_cat not in prompt2imgfile[prompt_name]:
                                    prompt2imgfile[prompt_name][target_cat] = []
                                prompt2imgfile[prompt_name][target_cat].append(count_num)
                                is_keep = True
                    else:
                        attr2imgfile[prompt_name].append(count_num)
                        is_keep = True
                        meta['attr_type'].append(key)
                        meta['attr_val'].append(val)
            if num_attr is not None and len(meta['attr_type']) not in num_attr:
                break
            if is_keep:
                all_meta.append(meta)
                count_num += 1
        return all_meta, attr2imgfile, prompt2imgfile, count_num

    def select_patch(self, image):
        w_id = random.choice([i for i in range(self.layout_w)])
        h_id = random.choice([i for i in range(self.layout_h)])
        image_h, image_w = image.size
        patch_h, patch_w = image_h / self.layout_h, image_w / self.layout_w
        top = int(patch_h * h_id)
        bottom = int(patch_h * h_id + patch_h)
        left = int(patch_w * w_id)
        right = int(patch_w * w_id + patch_w)
        patch = image.crop((left, top, right, bottom))
        return patch
        
    def __getitem__(self, idx):

        item = self.data[idx]
        if len(item['content_text']) == 0:
            print(item)
        text = item['content_text'][0]
        image_file = item["image_file"]
        catename = self.descate2cate[text]

        style_image_file_list = []
        attr_type_list = []
        for attr_type, attr_val in zip(item['attr_type'], item['attr_val']):
            prompt_name = attr_type + "@" + attr_val.strip().split('@')[1]
            if prompt_name in self.prompt2imgfile:
                candidate_metas = self.prompt2imgfile[prompt_name][catename]
            else:
                candidate_metas = self.attr2imgfile[prompt_name]
            assert len(candidate_metas) >= 1
            meta_id_ = np.random.choice(candidate_metas, 1)[0]
            meta_ = self.data[meta_id_]
            file_name_ = meta_['image_file']
            style_image_file_list.append(str(file_name_))
            attr_type_list.append(attr_type)

        # read image
        raw_image_all = Image.open(image_file)
        raw_image = self.select_patch(raw_image_all)

        # original size
        original_width, original_height = raw_image.size
        original_size = torch.tensor([original_height, original_width])
        
        image_tensor = self.transform(raw_image.convert("RGB"))
        # random crop
        delta_h = image_tensor.shape[1] - self.size
        delta_w = image_tensor.shape[2] - self.size
        assert not all([delta_h, delta_w])
        
        if self.center_crop:
            top = delta_h // 2
            left = delta_w // 2
        else:
            top = np.random.randint(0, delta_h + 1)
            left = np.random.randint(0, delta_w + 1)
        image = transforms.functional.crop(
            image_tensor, top=top, left=left, height=self.size, width=self.size
        )
        crop_coords_top_left = torch.tensor([top, left])


        clip_image_list = []
        style_image_list = []
        for i in range(len(style_image_file_list)):
            style_image_ = Image.open(style_image_file_list[i])
            style_image = self.select_patch(style_image_)
            style_image_list.append(style_image)
            clip_image_list.append(self.blip_transform(style_image.convert("RGB")).unsqueeze(0))

        # drop
        drop_image_embed = 0
        rand_num = random.random()
        if rand_num < self.i_drop_rate:
            drop_image_embed = 1
        elif rand_num < (self.i_drop_rate + self.t_drop_rate):
            text = ""
        elif rand_num < (self.i_drop_rate + self.t_drop_rate + self.ti_drop_rate):
            text = ""
            drop_image_embed = 1

        # get text and tokenize
        text_input_ids = self.tokenizer(
            text,
            max_length=self.tokenizer.model_max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        ).input_ids
        
        text_input_ids_2 = self.tokenizer_2(
            text,
            max_length=self.tokenizer_2.model_max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        ).input_ids
        
        if len(clip_image_list) < self.max_ref_attrs:
            zero_image = torch.zeros_like(clip_image_list[0])
            zero_attr_type = ""
            zero_attr_list = [0] * len(clip_image_list)
            for i in range(self.max_ref_attrs - len(clip_image_list)):
                clip_image_list.append(zero_image)
                attr_type_list.append(zero_attr_type)
                zero_attr_list.append(1)
        else:
            zero_attr_list = [0] * self.max_ref_atntrs

        # shuffle the order of attrs 
        rand_inds = [i for i in range(self.max_ref_attrs)]
        random.shuffle(rand_inds)
        clip_image_list = [clip_image_list[i] for i in rand_inds]
        attr_type_list = [attr_type_list[i] for i in rand_inds]
        zero_attr_list = [zero_attr_list[i] for i in rand_inds]
        

        return {
            "image": image,
            "text_input_ids": text_input_ids,
            "text_input_ids_2": text_input_ids_2,
            "attr_type_list": attr_type_list,
            "clip_image_list": clip_image_list,
            "drop_image_embed": drop_image_embed,
            "original_size": original_size,
            "crop_coords_top_left": crop_coords_top_left,
            "target_size": torch.tensor([self.size, self.size]),
            "zero_attr_list": zero_attr_list
        }

    def get_balance_sampler(self, repeat_thresh=0.2):
        def repeat_factors_from_category_frequency(dataset_dicts, repeat_thresh=0.2, sqrt=True):
            """
            Compute (fractional) per-image repeat factors based on category frequency.
            The repeat factor for an image is a function of the frequency of the rarest
            category labeled in that image. The "frequency of category c" in [0, 1] is defined
            as the fraction of images in the training set (without repeats) in which category c
            appears.
            See :paper:`lvis` (>= v2) Appendix B.2.

            Args:
                dataset_dicts (list[dict]): annotations in Detectron2 dataset format.
                repeat_thresh (float): frequency threshold below which data is repeated.
                    If the frequency is half of `repeat_thresh`, the image will be
                    repeated twice.
                sqrt (bool): if True, apply :func:`math.sqrt` to the repeat factor.

            Returns:
                torch.Tensor:
                    the i-th element is the repeat factor for the dataset image at index i.
            """
            # 1. For each category c, compute the fraction of images that contain it: f(c)
            category_freq = defaultdict(int)
            for dataset_dict in dataset_dicts:  # For each image (without repeats)
                attr_types = dataset_dict['attr_type']
                for attr_type in attr_types:
                    category_freq[attr_type] += 1
            num_images = len(dataset_dicts)
            for k, v in category_freq.items():
                category_freq[k] = v / num_images

            # 2. For each category c, compute the category-level repeat factor:
            #    r(c) = max(1, sqrt(t / f(c)))
            category_rep = {
                attr_type: max(
                    1.0,
                    (math.sqrt(repeat_thresh / cat_freq) if sqrt else (repeat_thresh / cat_freq)),
                )
                for attr_type, cat_freq in category_freq.items()
            }
            for attr_type in sorted(category_rep.keys()):
                logger.info(
                    f"Attr type {attr_type}: freq={category_freq[attr_type]:.2f}, rep={category_rep[attr_type]:.2f}"
                )
                print(f"Attr type {attr_type}: freq={category_freq[attr_type]:.2f}, rep={category_rep[attr_type]:.2f}")

            # 3. For each image I, compute the image-level repeat factor:
            #    r(I) = max_{c in I} r(c)
            rep_factors = []
            for dataset_dict in dataset_dicts:
                attr_types = dataset_dict['attr_type']
                rep_factor = max({category_rep[attr_type] for attr_type in attr_types}, default=1.0)
                rep_factors.append(rep_factor)

            return torch.tensor(rep_factors, dtype=torch.float32)
        
        balance_factors = repeat_factors_from_category_frequency(self.data, repeat_thresh=repeat_thresh)
        balance_sampler = WeightedRandomSampler(balance_factors, len(balance_factors), replacement=True)

        return balance_sampler
        
    
    def __len__(self):
        return len(self.data)