EpicPinkPenguin commited on
Commit
11b31cc
1 Parent(s): b8a0728

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -40
README.md CHANGED
@@ -581,24 +581,24 @@ test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="
581
  ## Agent Performance
582
  The PPO RL agent was trained for 50M steps on each environment and obtained the following final performance metrics.
583
 
584
- | Environment | Return |
585
- |:------------|:-------|
586
- | bigfish | 29.16 |
587
- | bossfight | 11.35 |
588
- | caveflyer | 09.47 |
589
- | chaser | 11.46 |
590
- | climber | 11.17 |
591
- | coinrun | 09.74 |
592
- | dodgeball | 16.78 |
593
- | fruitbot | 29.87 |
594
- | heist | 09.98 |
595
- | jumper | 08.71 |
596
- | leaper | 07.71 |
597
- | maze | 09.99 |
598
- | miner | 12.63 |
599
- | ninja | 09.44 |
600
- | plunder | 25.98 |
601
- | starpilot | 55.28 |
602
 
603
 
604
  ## Dataset Structure
@@ -651,27 +651,5 @@ The dataset is divided into a `train` (90%) and `test` (10%) split. Each environ
651
  ## Dataset Creation
652
  The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps in each environment. The trajectories where generated by sampling from the predicted action distribution at each step (not taking the argmax). The environments were created on `distribution_mode=easy` and with unlimited levels.
653
 
654
- ## Video Samples
655
- Here is a collection of videos with the RGB observations from the dataset.
656
-
657
- | Environment | Observation |
658
- |:------------|:------------|
659
- | bigfish | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/lHQXBqLdoWicXlt68I9QX.mp4"></video> |
660
- | bossfight | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/LPoafGi4YBWqqkuFlEN_l.mp4"></video> |
661
- | caveflyer | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XVqRwu_9yfX4ECQc4At4G.mp4"></video> |
662
- | chaser | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/FIKVv48SThqiC1Z2PYQ7U.mp4"></video> |
663
- | climber | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XJQlA7IyF9_gwUiw-FkND.mp4"></video> |
664
- | coinrun | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/Ucv3HZttewMRQzTL8r_Tw.mp4"></video> |
665
- | dodgeball | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/5HetbKuXBpO-v1jcVyLTU.mp4"></video> |
666
- | fruitbot | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/zKCyxXvauXjUac-5kEAWz.mp4"></video> |
667
- | heist | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/AdZ6XNmUN5_00BKd9BN8R.mp4"></video> |
668
- | jumper | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/s5k31gWK2Vc6Lp6QVzQXA.mp4"></video> |
669
- | leaper | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/_hDMocxjmzutc0t5FfoTX.mp4"></video> |
670
- | maze | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/uhNdDPuNhZpxVns91Ba-9.mp4"></video> |
671
- | miner | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/ElpJ8l2WHJGrprZ3-giHU.mp4"></video> |
672
- | ninja | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/b9i-fb2Twh8XmBBNf2DRG.mp4"></video> |
673
- | plunder | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/JPeGNOVzrotuYUjfzZj40.mp4"></video> |
674
- | starpilot | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/wY9lZgkw5tor19hCWmm6A.mp4"></video> |
675
-
676
  ## Procgen Benchmark
677
  The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft.
 
581
  ## Agent Performance
582
  The PPO RL agent was trained for 50M steps on each environment and obtained the following final performance metrics.
583
 
584
+ | Environment | Return | Observation |
585
+ |:------------|:-------|:------------|
586
+ | bigfish | 29.16 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/lHQXBqLdoWicXlt68I9QX.mp4"></video> |
587
+ | bossfight | 11.35 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/LPoafGi4YBWqqkuFlEN_l.mp4"></video> |
588
+ | caveflyer | 09.47 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XVqRwu_9yfX4ECQc4At4G.mp4"></video> |
589
+ | chaser | 11.46 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/FIKVv48SThqiC1Z2PYQ7U.mp4"></video> |
590
+ | climber | 11.17 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XJQlA7IyF9_gwUiw-FkND.mp4"></video> |
591
+ | coinrun | 09.74 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/Ucv3HZttewMRQzTL8r_Tw.mp4"></video> |
592
+ | dodgeball | 16.78 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/5HetbKuXBpO-v1jcVyLTU.mp4"></video> |
593
+ | fruitbot | 29.87 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/zKCyxXvauXjUac-5kEAWz.mp4"></video> |
594
+ | heist | 09.98 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/AdZ6XNmUN5_00BKd9BN8R.mp4"></video> |
595
+ | jumper | 08.71 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/s5k31gWK2Vc6Lp6QVzQXA.mp4"></video> |
596
+ | leaper | 07.71 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/_hDMocxjmzutc0t5FfoTX.mp4"></video> |
597
+ | maze | 09.99 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/uhNdDPuNhZpxVns91Ba-9.mp4"></video> |
598
+ | miner | 12.63 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/ElpJ8l2WHJGrprZ3-giHU.mp4"></video> |
599
+ | ninja | 09.44 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/b9i-fb2Twh8XmBBNf2DRG.mp4"></video> |
600
+ | plunder | 25.98 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/JPeGNOVzrotuYUjfzZj40.mp4"></video> |
601
+ | starpilot | 55.28 | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/wY9lZgkw5tor19hCWmm6A.mp4"></video> |
602
 
603
 
604
  ## Dataset Structure
 
651
  ## Dataset Creation
652
  The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps in each environment. The trajectories where generated by sampling from the predicted action distribution at each step (not taking the argmax). The environments were created on `distribution_mode=easy` and with unlimited levels.
653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654
  ## Procgen Benchmark
655
  The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft.