File size: 26,808 Bytes
9d20dfd
006e7ea
9d20dfd
2b76720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b077f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d20dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a5c5a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d20dfd
2b76720
 
 
 
b077f66
 
 
 
9d20dfd
 
 
 
9a5c5a4
 
 
 
9d20dfd
0286274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b287cd
0286274
3ed9aa4
0286274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dec2923
0286274
 
 
3ed9aa4
0286274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421b403
 
 
 
 
 
 
 
0286274
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
pretty_name: LoWRA-Bench
dataset_info:
- config_name: mistral-7b-v0.1-dpo
  features:
  - name: task_name
    dtype: string
  - name: layer_model
    dtype: string
  - name: layer_name
    dtype: string
  - name: pre_ft_name
    dtype: string
  - name: pre_ft_weight
    sequence:
      sequence: float32
  - name: lora_0_name
    dtype: string
  - name: lora_0_A_weight
    sequence:
      sequence: float32
  - name: lora_0_B_weight
    sequence:
      sequence: float32
  - name: lora_0_rank
    dtype: int64
  - name: lora_0_alpha
    dtype: int64
  - name: lora_1_name
    dtype: string
  - name: lora_1_A_weight
    sequence:
      sequence: float32
  - name: lora_1_B_weight
    sequence:
      sequence: float32
  - name: lora_1_rank
    dtype: int64
  - name: lora_1_alpha
    dtype: int64
  - name: lora_2_name
    dtype: string
  - name: lora_2_A_weight
    sequence:
      sequence: float32
  - name: lora_2_B_weight
    sequence:
      sequence: float32
  - name: lora_2_rank
    dtype: int64
  - name: lora_2_alpha
    dtype: int64
  - name: lora_3_name
    dtype: string
  - name: lora_3_A_weight
    sequence:
      sequence: float32
  - name: lora_3_B_weight
    sequence:
      sequence: float32
  - name: lora_3_rank
    dtype: int64
  - name: lora_3_alpha
    dtype: int64
  - name: lora_4_name
    dtype: string
  - name: lora_4_A_weight
    sequence:
      sequence: float32
  - name: lora_4_B_weight
    sequence:
      sequence: float32
  - name: lora_4_rank
    dtype: int64
  - name: lora_4_alpha
    dtype: int64
  - name: lora_5_name
    dtype: string
  - name: lora_5_A_weight
    sequence:
      sequence: float32
  - name: lora_5_B_weight
    sequence:
      sequence: float32
  - name: lora_5_rank
    dtype: int64
  - name: lora_5_alpha
    dtype: int64
  - name: lora_6_name
    dtype: string
  - name: lora_6_A_weight
    sequence:
      sequence: float32
  - name: lora_6_B_weight
    sequence:
      sequence: float32
  - name: lora_6_rank
    dtype: int64
  - name: lora_6_alpha
    dtype: int64
  - name: lora_7_name
    dtype: string
  - name: lora_7_A_weight
    sequence:
      sequence: float32
  - name: lora_7_B_weight
    sequence:
      sequence: float32
  - name: lora_7_rank
    dtype: int64
  - name: lora_7_alpha
    dtype: int64
  - name: lora_8_name
    dtype: string
  - name: lora_8_A_weight
    sequence:
      sequence: float32
  - name: lora_8_B_weight
    sequence:
      sequence: float32
  - name: lora_8_rank
    dtype: int64
  - name: lora_8_alpha
    dtype: int64
  - name: lora_9_name
    dtype: string
  - name: lora_9_A_weight
    sequence:
      sequence: float32
  - name: lora_9_B_weight
    sequence:
      sequence: float32
  - name: lora_9_rank
    dtype: int64
  - name: lora_9_alpha
    dtype: int64
  - name: lora_10_name
    dtype: string
  - name: lora_10_A_weight
    sequence:
      sequence: float32
  - name: lora_10_B_weight
    sequence:
      sequence: float32
  - name: lora_10_rank
    dtype: int64
  - name: lora_10_alpha
    dtype: int64
  - name: lora_11_name
    dtype: string
  - name: lora_11_A_weight
    sequence:
      sequence: float32
  - name: lora_11_B_weight
    sequence:
      sequence: float32
  - name: lora_11_rank
    dtype: int64
  - name: lora_11_alpha
    dtype: int64
  - name: lora_12_name
    dtype: string
  - name: lora_12_A_weight
    sequence:
      sequence: float32
  - name: lora_12_B_weight
    sequence:
      sequence: float32
  - name: lora_12_rank
    dtype: int64
  - name: lora_12_alpha
    dtype: int64
  - name: lora_13_name
    dtype: string
  - name: lora_13_A_weight
    sequence:
      sequence: float32
  - name: lora_13_B_weight
    sequence:
      sequence: float32
  - name: lora_13_rank
    dtype: int64
  - name: lora_13_alpha
    dtype: int64
  - name: lora_14_name
    dtype: string
  - name: lora_14_A_weight
    sequence:
      sequence: float32
  - name: lora_14_B_weight
    sequence:
      sequence: float32
  - name: lora_14_rank
    dtype: int64
  - name: lora_14_alpha
    dtype: int64
  splits:
  - name: train
    num_bytes: 8661875544
    num_examples: 128
  download_size: 3419054382
  dataset_size: 8661875544
- config_name: mistral-7b-v0.1-sft
  features:
  - name: task_name
    dtype: string
  - name: layer_model
    dtype: string
  - name: layer_name
    dtype: string
  - name: pre_ft_name
    dtype: string
  - name: pre_ft_weight
    sequence:
      sequence: float32
  - name: lora_0_name
    dtype: string
  - name: lora_0_A_weight
    sequence:
      sequence: float32
  - name: lora_0_B_weight
    sequence:
      sequence: float32
  - name: lora_0_rank
    dtype: int64
  - name: lora_0_alpha
    dtype: int64
  - name: lora_1_name
    dtype: string
  - name: lora_1_A_weight
    sequence:
      sequence: float32
  - name: lora_1_B_weight
    sequence:
      sequence: float32
  - name: lora_1_rank
    dtype: int64
  - name: lora_1_alpha
    dtype: int64
  - name: lora_2_name
    dtype: string
  - name: lora_2_A_weight
    sequence:
      sequence: float32
  - name: lora_2_B_weight
    sequence:
      sequence: float32
  - name: lora_2_rank
    dtype: int64
  - name: lora_2_alpha
    dtype: int64
  - name: lora_3_name
    dtype: string
  - name: lora_3_A_weight
    sequence:
      sequence: float32
  - name: lora_3_B_weight
    sequence:
      sequence: float32
  - name: lora_3_rank
    dtype: int64
  - name: lora_3_alpha
    dtype: int64
  - name: lora_4_name
    dtype: string
  - name: lora_4_A_weight
    sequence:
      sequence: float32
  - name: lora_4_B_weight
    sequence:
      sequence: float32
  - name: lora_4_rank
    dtype: int64
  - name: lora_4_alpha
    dtype: int64
  - name: lora_5_name
    dtype: string
  - name: lora_5_A_weight
    sequence:
      sequence: float32
  - name: lora_5_B_weight
    sequence:
      sequence: float32
  - name: lora_5_rank
    dtype: int64
  - name: lora_5_alpha
    dtype: int64
  - name: lora_6_name
    dtype: string
  - name: lora_6_A_weight
    sequence:
      sequence: float32
  - name: lora_6_B_weight
    sequence:
      sequence: float32
  - name: lora_6_rank
    dtype: int64
  - name: lora_6_alpha
    dtype: int64
  - name: lora_7_name
    dtype: string
  - name: lora_7_A_weight
    sequence:
      sequence: float32
  - name: lora_7_B_weight
    sequence:
      sequence: float32
  - name: lora_7_rank
    dtype: int64
  - name: lora_7_alpha
    dtype: int64
  - name: lora_8_name
    dtype: string
  - name: lora_8_A_weight
    sequence:
      sequence: float32
  - name: lora_8_B_weight
    sequence:
      sequence: float32
  - name: lora_8_rank
    dtype: int64
  - name: lora_8_alpha
    dtype: int64
  - name: lora_9_name
    dtype: string
  - name: lora_9_A_weight
    sequence:
      sequence: float32
  - name: lora_9_B_weight
    sequence:
      sequence: float32
  - name: lora_9_rank
    dtype: int64
  - name: lora_9_alpha
    dtype: int64
  - name: lora_10_name
    dtype: string
  - name: lora_10_A_weight
    sequence:
      sequence: float32
  - name: lora_10_B_weight
    sequence:
      sequence: float32
  - name: lora_10_rank
    dtype: int64
  - name: lora_10_alpha
    dtype: int64
  - name: lora_11_name
    dtype: string
  - name: lora_11_A_weight
    sequence:
      sequence: float32
  - name: lora_11_B_weight
    sequence:
      sequence: float32
  - name: lora_11_rank
    dtype: int64
  - name: lora_11_alpha
    dtype: int64
  - name: lora_12_name
    dtype: string
  - name: lora_12_A_weight
    sequence:
      sequence: float32
  - name: lora_12_B_weight
    sequence:
      sequence: float32
  - name: lora_12_rank
    dtype: int64
  - name: lora_12_alpha
    dtype: int64
  - name: lora_13_name
    dtype: string
  - name: lora_13_A_weight
    sequence:
      sequence: float32
  - name: lora_13_B_weight
    sequence:
      sequence: float32
  - name: lora_13_rank
    dtype: int64
  - name: lora_13_alpha
    dtype: int64
  - name: lora_14_name
    dtype: string
  - name: lora_14_A_weight
    sequence:
      sequence: float32
  - name: lora_14_B_weight
    sequence:
      sequence: float32
  - name: lora_14_rank
    dtype: int64
  - name: lora_14_alpha
    dtype: int64
  splits:
  - name: train
    num_bytes: 8661875544
    num_examples: 128
  download_size: 5791365905
  dataset_size: 8661875544
- config_name: stable-diffusion-1.5
  features:
  - name: task_name
    dtype: string
  - name: layer_model
    dtype: string
  - name: layer_name
    dtype: string
  - name: pre_ft_name
    dtype: string
  - name: pre_ft_weight
    sequence:
      sequence: float32
  - name: lora_0_name
    dtype: string
  - name: lora_0_A_weight
    sequence:
      sequence: float32
  - name: lora_0_B_weight
    sequence:
      sequence: float32
  - name: lora_0_rank
    dtype: int64
  - name: lora_0_alpha
    dtype: float64
  - name: lora_1_name
    dtype: string
  - name: lora_1_A_weight
    sequence:
      sequence: float32
  - name: lora_1_B_weight
    sequence:
      sequence: float32
  - name: lora_1_rank
    dtype: int64
  - name: lora_1_alpha
    dtype: float64
  - name: lora_2_name
    dtype: string
  - name: lora_2_A_weight
    sequence:
      sequence: float32
  - name: lora_2_B_weight
    sequence:
      sequence: float32
  - name: lora_2_rank
    dtype: int64
  - name: lora_2_alpha
    dtype: float64
  - name: lora_3_name
    dtype: string
  - name: lora_3_A_weight
    sequence:
      sequence: float32
  - name: lora_3_B_weight
    sequence:
      sequence: float32
  - name: lora_3_rank
    dtype: int64
  - name: lora_3_alpha
    dtype: float64
  - name: lora_4_name
    dtype: string
  - name: lora_4_A_weight
    sequence:
      sequence: float32
  - name: lora_4_B_weight
    sequence:
      sequence: float32
  - name: lora_4_rank
    dtype: int64
  - name: lora_4_alpha
    dtype: float64
  - name: lora_5_name
    dtype: string
  - name: lora_5_A_weight
    sequence:
      sequence: float32
  - name: lora_5_B_weight
    sequence:
      sequence: float32
  - name: lora_5_rank
    dtype: int64
  - name: lora_5_alpha
    dtype: float64
  - name: lora_6_name
    dtype: string
  - name: lora_6_A_weight
    sequence:
      sequence: float32
  - name: lora_6_B_weight
    sequence:
      sequence: float32
  - name: lora_6_rank
    dtype: int64
  - name: lora_6_alpha
    dtype: float64
  - name: lora_7_name
    dtype: string
  - name: lora_7_A_weight
    sequence:
      sequence: float32
  - name: lora_7_B_weight
    sequence:
      sequence: float32
  - name: lora_7_rank
    dtype: int64
  - name: lora_7_alpha
    dtype: float64
  - name: lora_8_name
    dtype: string
  - name: lora_8_A_weight
    sequence:
      sequence: float32
  - name: lora_8_B_weight
    sequence:
      sequence: float32
  - name: lora_8_rank
    dtype: int64
  - name: lora_8_alpha
    dtype: float64
  - name: lora_9_name
    dtype: string
  - name: lora_9_A_weight
    sequence:
      sequence: float32
  - name: lora_9_B_weight
    sequence:
      sequence: float32
  - name: lora_9_rank
    dtype: int64
  - name: lora_9_alpha
    dtype: float64
  - name: lora_10_name
    dtype: string
  - name: lora_10_A_weight
    sequence:
      sequence: float32
  - name: lora_10_B_weight
    sequence:
      sequence: float32
  - name: lora_10_rank
    dtype: int64
  - name: lora_10_alpha
    dtype: float64
  - name: lora_11_name
    dtype: string
  - name: lora_11_A_weight
    sequence:
      sequence: float32
  - name: lora_11_B_weight
    sequence:
      sequence: float32
  - name: lora_11_rank
    dtype: int64
  - name: lora_11_alpha
    dtype: float64
  - name: lora_12_name
    dtype: string
  - name: lora_12_A_weight
    sequence:
      sequence: float32
  - name: lora_12_B_weight
    sequence:
      sequence: float32
  - name: lora_12_rank
    dtype: int64
  - name: lora_12_alpha
    dtype: float64
  - name: lora_13_name
    dtype: string
  - name: lora_13_A_weight
    sequence:
      sequence: float32
  - name: lora_13_B_weight
    sequence:
      sequence: float32
  - name: lora_13_rank
    dtype: int64
  - name: lora_13_alpha
    dtype: float64
  - name: lora_14_name
    dtype: string
  - name: lora_14_A_weight
    sequence:
      sequence: float32
  - name: lora_14_B_weight
    sequence:
      sequence: float32
  - name: lora_14_rank
    dtype: int64
  - name: lora_14_alpha
    dtype: float64
  splits:
  - name: train
    num_bytes: 2561357508
    num_examples: 264
  download_size: 1724766354
  dataset_size: 2561357508
- config_name: vit
  features:
  - name: task_name
    dtype: string
  - name: layer_model
    dtype: string
  - name: layer_name
    dtype: string
  - name: pre_ft_name
    dtype: string
  - name: pre_ft_weight
    sequence:
      sequence: float32
  - name: lora_0_name
    dtype: string
  - name: lora_0_A_weight
    sequence:
      sequence: float32
  - name: lora_0_B_weight
    sequence:
      sequence: float32
  - name: lora_0_rank
    dtype: int64
  - name: lora_0_alpha
    dtype: int64
  - name: lora_1_name
    dtype: string
  - name: lora_1_A_weight
    sequence:
      sequence: float32
  - name: lora_1_B_weight
    sequence:
      sequence: float32
  - name: lora_1_rank
    dtype: int64
  - name: lora_1_alpha
    dtype: int64
  - name: lora_2_name
    dtype: string
  - name: lora_2_A_weight
    sequence:
      sequence: float32
  - name: lora_2_B_weight
    sequence:
      sequence: float32
  - name: lora_2_rank
    dtype: int64
  - name: lora_2_alpha
    dtype: int64
  - name: lora_3_name
    dtype: string
  - name: lora_3_A_weight
    sequence:
      sequence: float32
  - name: lora_3_B_weight
    sequence:
      sequence: float32
  - name: lora_3_rank
    dtype: int64
  - name: lora_3_alpha
    dtype: int64
  - name: lora_4_name
    dtype: string
  - name: lora_4_A_weight
    sequence:
      sequence: float32
  - name: lora_4_B_weight
    sequence:
      sequence: float32
  - name: lora_4_rank
    dtype: int64
  - name: lora_4_alpha
    dtype: int64
  - name: lora_5_name
    dtype: string
  - name: lora_5_A_weight
    sequence:
      sequence: float32
  - name: lora_5_B_weight
    sequence:
      sequence: float32
  - name: lora_5_rank
    dtype: int64
  - name: lora_5_alpha
    dtype: int64
  - name: lora_6_name
    dtype: string
  - name: lora_6_A_weight
    sequence:
      sequence: float32
  - name: lora_6_B_weight
    sequence:
      sequence: float32
  - name: lora_6_rank
    dtype: int64
  - name: lora_6_alpha
    dtype: int64
  - name: lora_7_name
    dtype: string
  - name: lora_7_A_weight
    sequence:
      sequence: float32
  - name: lora_7_B_weight
    sequence:
      sequence: float32
  - name: lora_7_rank
    dtype: int64
  - name: lora_7_alpha
    dtype: int64
  - name: lora_8_name
    dtype: string
  - name: lora_8_A_weight
    sequence:
      sequence: float32
  - name: lora_8_B_weight
    sequence:
      sequence: float32
  - name: lora_8_rank
    dtype: int64
  - name: lora_8_alpha
    dtype: int64
  - name: lora_9_name
    dtype: string
  - name: lora_9_A_weight
    sequence:
      sequence: float32
  - name: lora_9_B_weight
    sequence:
      sequence: float32
  - name: lora_9_rank
    dtype: int64
  - name: lora_9_alpha
    dtype: int64
  - name: lora_10_name
    dtype: string
  - name: lora_10_A_weight
    sequence:
      sequence: float32
  - name: lora_10_B_weight
    sequence:
      sequence: float32
  - name: lora_10_rank
    dtype: int64
  - name: lora_10_alpha
    dtype: int64
  - name: lora_11_name
    dtype: string
  - name: lora_11_A_weight
    sequence:
      sequence: float32
  - name: lora_11_B_weight
    sequence:
      sequence: float32
  - name: lora_11_rank
    dtype: int64
  - name: lora_11_alpha
    dtype: int64
  - name: lora_12_name
    dtype: string
  - name: lora_12_A_weight
    sequence:
      sequence: float32
  - name: lora_12_B_weight
    sequence:
      sequence: float32
  - name: lora_12_rank
    dtype: int64
  - name: lora_12_alpha
    dtype: int64
  - name: lora_13_name
    dtype: string
  - name: lora_13_A_weight
    sequence:
      sequence: float32
  - name: lora_13_B_weight
    sequence:
      sequence: float32
  - name: lora_13_rank
    dtype: int64
  - name: lora_13_alpha
    dtype: int64
  - name: lora_14_name
    dtype: string
  - name: lora_14_A_weight
    sequence:
      sequence: float32
  - name: lora_14_B_weight
    sequence:
      sequence: float32
  - name: lora_14_rank
    dtype: int64
  - name: lora_14_alpha
    dtype: int64
  splits:
  - name: train
    num_bytes: 93231628
    num_examples: 24
  download_size: 111481540
  dataset_size: 93231628
configs:
- config_name: mistral-7b-v0.1-dpo
  data_files:
  - split: train
    path: mistral-7b-v0.1-dpo/train-*
- config_name: mistral-7b-v0.1-sft
  data_files:
  - split: train
    path: mistral-7b-v0.1-sft/train-*
- config_name: stable-diffusion-1.5
  data_files:
  - split: train
    path: stable-diffusion-1.5/train-*
- config_name: vit
  data_files:
  - split: train
    path: vit/train-*
---

# Dataset Card for the LoWRA Bench Dataset
The ***Lo***RA ***W***eight ***R***ecovery ***A***ttack (LoWRA) Bench is a comprehensive 
benchmark designed to evaluate Pre-Fine-Tuning (Pre-FT) weight recovery methods as presented
in the "Recovering the Pre-Fine-Tuning Weights of Generative Models" paper.

- [Task Details](#task-details)
- [Dataset Description](#dataset-description)
- [Dataset Structure](#dataset-structure)
  - [Data Subsets](#data-subsets)
  - [Data Fields](#data-fields)
  - [Layer Merging Example](#layer-merging-example)
- [Dataset Creation](#dataset-creation)
- [Risks and Out-of-Scope Use](#risks-and-out-of-scope-use)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)


- **🌐 Homepage:** 
https://vision.huji.ac.il/spectral_detuning/
- **🧑‍💻 Repository:**
https://github.com/eliahuhorwitz/Spectral-DeTuning
- **📃 Paper:**
https://arxiv.org/abs/2402.10208
- **✉️ Point of Contact:**
eliahu.horwitz@mail.huji.ac.il 


## Task Details
**Pre-Fine-Tuning Weight Recovery Attack Setting:** We uncover a vulnerability in LoRA fine-tuned models wherein an attacker is 
able to undo the fine-tuning process and recover the weights of the original pre-trained model. 
The setting for the vulnerability is as follows: 

(a) The attacker only has access to n different LoRA fine-tuned models. 

(b) The attacker assumes that all n models originated from the same source model.  

(c) Using only the n visible models, the attacker attempts to recover the original source model.

**Note: The attacker has no access to the low-rank decomposition of the fine-tuned models.**

## Dataset Description

The LoWRA Bench dataset is designed to evaluate the performance of Pre-FT weight recovery methods. 
The dataset encompasses three pre-trained representative source models:
1. A Vision Transformer (ViT) pre-trained on ImageNet-1K.
2. Mistral-7B-v0.1.
3. Stable Diffusion 1.5.

These models collectively cover supervised and self-supervised objectives, spanning both vision and
natural language processing (NLP) domains, as well as generative and discriminative tasks. 
Notably, these models are widely used and deployed in numerous production systems.

For each source model, we curate 15 LoRA models fine-tuned on diverse datasets, tasks, and objectives. 
The dataset comprises a diverse array of layer types, including self-attention, cross-attention, 
and MLPs. This diversity enables us to assess the generalization capabilities of Pre-FT methods. 
The evaluation can be conducted on a per-model basis, per layer type, or layer depth, 
allowing for a comprehensive analysis of Pre-FT methods. Overall, our dataset includes 544 source 
model layers. When taking into account the fine-tuned LoRA layers, the dataset includes over 
8,000 layers.


## Dataset Structure
The dataset contains 4 subsets, for each subset we curate 15 LoRA fine-tuned models. 
Each row of the dataset represents a single layer that should be recovered and contains all the needed information for the recovery and numerical evaluation.
In particular, for each layer, the dataset includes the original Pre-FT weights and the *unmerged* fine-tuned LoRA weight matrices. 
We decided to provide the unmerged weights instead of the merged ones for two reasons:
1. Providing the unmerged weights significantly reduces the storage size of the dataset (e.g., for a single Mistral subset this reduces the size from ~100GB to ~8GB).
2. Providing the unmerged weights allows the dataset user to study the properties of the fine-tuned LoRA layers and may help when developing new methods.

We leave the merging of the layers to the user, keep in mind this should be done carefully and tested to ensure the original Pre-FT weights are not simply 
provided to the method verbatim. See [Layer Merging Example ](#layer-merging-example) for an example taken from our GitHub repository.


### Data Subsets
The table below describes the dataset subsets in detail:

| Subset Name          | Pre-FT Model         | Task                          | Fine-tuning Task | # Pre-FT Layers | # Fine-tuned Layers |
|----------------------|----------------------|-------------------------------|------------------|-----------------|---------------------|
| vit                  | ViT                  | Image Classification          | VTAB-1K          | 24              | 360                 |
| stable-diffusion-1.5 | Stable Diffusion 1.5 | Text-to-Image <br/>Generation | Personalization  | 264             | 3960                |
| mistral-7b-v0.1-sft  | Mistral-7B-v0.1      | Text Generation               | UltraChat SFT    | 128             | 1920                |
| mistral-7b-v0.1-dpo  | Mistral-7B-v0.1      | Text Generation               | UltraFeedback DPO| 128             | 1920                |


### Data Fields
As described above, each row of the dataset represents a single layer that should be recovered and contains the following fields: 

    task_name - The name of the task the model was fine-tuned on (subset).
    layer_model - In some cases a Pre-FT model has more than one model (e.g., Stable Diffusion fine-tuned both 
                    the UNet and the Text Encoder). This field specifies the model the layer belongs to.
    layer_name - The name of the layer in the Pre-FT model as it appears in the model state_dict.
    pre_ft_name - The name of the Pre-FT model (e.g., runwayml/stable-diffusion-v1-5).
    pre_ft_weight - The weight matrix of the Pre-FT models layer. 
    lora_{lora_idx}_name - The name of the LoRA fine-tuned model.
    lora_{lora_idx}_A_weight - The LoRA A weight matrix of the LoRA fine-tuned models layer.
    lora_{lora_idx}_B_weight - The LoRA B weight matrix of the LoRA fine-tuned models layer.
    lora_{lora_idx}_rank - The LoRA rank of the LoRA fine-tuned models layer.
    lora_{lora_idx}_alpha - The LoRA alpha of the LoRA fine-tuned models layer.

where `{lora_idx}` is the index of the LoRA fine-tuned model in the subset (there are 15 LoRA models per subset).


### Layer Merging Example 
The following code snippet demonstrates merging the LoRA fine-tuned weights with the Pre-FT weights. 
```python
def merge_lora_weights(args, layer_idx, device):
    dataset = load_dataset(args.dataset, name=args.subset, cache_dir=args.cache_dir)
    layer = deepcopy(dataset.with_format("torch")["train"][layer_idx])

    merged_layer = {}

    # Note: load the ground truth Pre-FT weights
    merged_layer['layer_model'] = layer['layer_model']
    merged_layer['layer_name'] = layer['layer_name']
    merged_layer['pre_ft_name'] = layer['pre_ft_name']
    W_pre_ft = deepcopy(layer['pre_ft_weight']).to(device).float()
    merged_layer['pre_ft_weight'] = deepcopy(W_pre_ft)

    # Note: merge the LoRA weights for all existing LoRA models
    for lora_idx in args.lora_ids:
        alpha = layer[f'lora_{lora_idx}_alpha']
        rank = layer[f'lora_{lora_idx}_rank']
        B = deepcopy(layer[f'lora_{lora_idx}_B_weight']).to(device).float()
        A = deepcopy(layer[f'lora_{lora_idx}_A_weight']).to(device).float()

        merged_layer[f'lora_{lora_idx}_name'] = layer[f'lora_{lora_idx}_name']
        merged_layer[f'lora_{lora_idx}_rank'] = rank
        merged_layer[f'lora_{lora_idx}_alpha'] = alpha
        merged_layer[f'lora_{lora_idx}_merged_weights'] = W_pre_ft + ((alpha / rank * B) @ A)

        assert torch.allclose(merged_layer['pre_ft_weight'], layer['pre_ft_weight'])
        assert not torch.allclose(merged_layer[f'lora_{lora_idx}_merged_weights'], layer['pre_ft_weight'])
        assert not torch.allclose(merged_layer[f'lora_{lora_idx}_merged_weights'], merged_layer['pre_ft_weight'])
    return merged_layer
```



## Dataset Creation

### Source Data
- The fine-tuning of the ViT models was performed using the [PEFT](https://huggingface.co/docs/peft/en/index) library 
  on various datasets from the [VTAB-1K](https://google-research.github.io/task_adaptation/) benchmark. 
- The fine-tuned LoRA models for Stable Diffusion are taken from civitai and were fine-tuned by [RalFinger](https://civitai.com/user/RalFinger).  
- The fine-tuning of Mistral was performed based on the Zephyr model as seen [here](https://github.com/huggingface/alignment-handbook/tree/main).

For the full list of models and hyper-parameters see the appendix of the [paper](https://arxiv.org/abs/2402.10208).


## Risks and Out-of-Scope Use
Our work uncovers a significant vulnerability in fine-tuned models, allowing attackers to 
access pre-fine-tuning weights. While this discovery reveals potential security risks, 
our primary objective is to advance the field of Machine Learning and raise awareness within the 
research community about the existing vulnerabilities in current models.

Instead of using the findings of this study to execute attacks, we advocate for their use by 
model creators to enhance the safety and security of their models. By acknowledging and 
addressing vulnerabilities, creators can proactively safeguard against potential threats.

Following established practices in the cyber-security community, we emphasize the importance of open
discussion and encourage the reporting of vulnerabilities. By fostering transparency and collaboration, 
we can collectively create a safer environment for deploying machine learning models.

## Considerations for Using the Data
### Licensing Information
[More Information Needed]

### Citation Information
If you use this dataset in your work please cite the following paper:

**BibTeX:**
```
@article{horwitz2024recovering,
  title={Recovering the Pre-Fine-Tuning Weights of Generative Models},
  author={Horwitz, Eliahu and Kahana, Jonathan and Hoshen, Yedid},
  journal={arXiv preprint arXiv:2402.10208},
  year={2024}
}
```